icon fsr

文献詳細

雑誌文献

Neurological Surgery 脳神経外科49巻3号

2021年05月発行

文献概要

特集 グリオーマ—現在の常識と近未来のスタンダード Ⅰ知っておくべきグリオーマの生物学的基礎知識

グリオーマの細胞生物学

著者: 立石健祐1

所属機関: 1横浜市立大学大学院医学研究科脳神経外科学

ページ範囲:P.476 - P.484

文献購入ページに移動
Point
・腫瘍起源が神経幹細胞,前駆細胞由来であることを支持する研究成果を概説する.
・グリオーマの発生・進展につながる遺伝子異常の役割について実験結果を紹介する.
・腫瘍内多様性,神経—腫瘍ネットワークについて最近の研究結果を紹介する.

参考文献

1)Kondo T, Raff M:Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289(5485):1754-1757, 2000
2)Clarke DL, et al:Generalized potential of adult neural stem cells. Science 288(5471):1660-1663, 2000
3)Sanai N, et al:Neural stem cells and the origin of gliomas. N Engl J Med 353:811-822, 2005
4)Sorrells SF, et al:Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377-381, 2018
5)Takase H, et al:Oligodendrogenesis after traumatic brain injury. Behav Brain Res 340:205-211, 2018
6)Santa-Olalla J, Covarrubias L:Epidermal growth factor(EGF), transforming growth factor-alpha(TGF-alpha), and basic fibroblast growth factor(bFGF)differentially influence neural precursor cells of mouse embryonic mesencephalon. J Neurosci Res 42:172-183, 1995
7)Reynolds BA, Weiss S:Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707-1710, 1992
8)Singh SK, et al:Identification of human brain tumour initiating cells. Nature 432(7015):396-401, 2004
9)Bonnet D, Dick JE:Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730-737, 1997
10)Singh SK, et al:Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821-5828, 2003
11)Coskun V, et al:CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci U S A 105:1026-1031, 2008
12)Gopisetty G, et al:Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. Oncogene 32:3119-3129, 2013
13)Suvà ML, et al:Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157:580-594, 2014
14)Neftel C, et al:An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178:835-849. e21, 2019
15)Lee J, et al:Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391-403, 2006
16)Shibao S, et al:Metabolic heterogeneity and plasticity of glioma stem cells in a mouse glioblastoma model. Neuro Oncol 20:343-354, 2018
17)Soeda A, et al:Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28:3949-3959, 2009
18)Calabrese C, et al:A perivascular niche for brain tumor stem cells. Cancer Cell 11:69-82, 2007
19)Shen Q, et al:Adult SVZ stem cells lie in a vascular niche:a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289-300, 2008
20)Eramo A, et al:Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238-1241, 2006
21)Bao S, et al:Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756-760, 2006
22)Venteicher AS, et al:Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355(6332):eaai8478, 2017
23)Patel AP, et al:Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396-1401, 2014
24)Stupp R, et al;European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups;National Cancer Institute of Canada Clinical Trials Group:Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459-466, 2009
25)Brennan CW, et al;TCGA Research Network:The somatic genomic landscape of glioblastoma. Cell 155:462-477, 2013
26)Arita H, et al:Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126:267-276, 2013
27)Chen J, et al:Malignant glioma:lessons from genomics, mouse models, and stem cells. Cell 149:36-47, 2012
28)Cancer Genome Atlas Research Network:Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061-1068, 2008
29)Suzuki H, et al:Mutational landscape and clonal architecture in grade Ⅱ and Ⅲ gliomas. Nature Genet 47:458-468, 2015
30)Alcantara Llaguno S, et al:Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat Neurosci 22:545-555, 2019
31)Lee JH, et al:Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560(7717):243-247, 2018
32)Alcantara Llaguno S, et al:Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45-56, 2009
33)Alcantara Llaguno SR, et al:Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 28:429-440, 2015
34)Wang Z, et al:Cell lineage-based stratification for glioblastoma. Cancer Cell 38:366-379. e8, 2020
35)Holland EC, et al:A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675-3685, 1998
36)Holland EC, et al:Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet 25:55-57, 2000
37)Sonoda Y, et al:Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61:4956-4960, 2001
38)Sonoda Y, et al:Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res 61:6674-6678, 2001
39)Wang Q, et al:Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42-56. e6, 2017
40)Koga T, et al:Longitudinal assessment of tumor development using cancer avatars derived from genetically engineered pluripotent stem cells. Nat Commun 11:550, 2020
glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35:692-704. e12, 2019
in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell 30:578-594, 2016
43)Philip B, et al:Mutant IDH1 promotes glioma formation in vivo. Cell Rep 23:1553-1564, 2018
44)Vaubel RA, et al:Genomic and phenotypic characterization of a broad panel of patient-derived xenografts reflects the diversity of glioblastoma. Clin Cancer Res 26:1094-1104, 2020
45)Tateishi K, et al:PI3K/AKT/mTOR pathway alterations promote malignant progression and xenograft formation in oligodendroglial tumors. Clin Cancer Res 25:4375-4387, 2019
46)Wakimoto H, et al:Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res 20:2898-2909, 2014
47)Giannini C, et al:Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7:164-176, 2005
48)D'Alessandris QG, et al:The clinical value of patient-derived glioblastoma tumorspheres in predicting treatment response. Neuro Oncol 19:1097-1108, 2017
49)Tateishi K, et al:Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28:773-784, 2015
50)Snuderl M, et al:Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810-817, 2011
51)Venkatesh HS, et al:Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549(7673):533-537, 2017
52)Venkatesh HS, et al:Electrical and synaptic integration of glioma into neural circuits. Nature 573(7775):539-545, 2019
53)Venkataramani V, et al:Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573(7775):532-538, 2019
54)Yu K, et al:PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578(7793):166-171, 2020

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1251

印刷版ISSN:0301-2603

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら