文献詳細
文献概要
特集 グリオーマ—現在の常識と近未来のスタンダード Ⅱグリオーマの疫学と診断
グリオーマの画像診断とradiomics
著者: 木下学1
所属機関: 1旭川医科大学医学部脳神経外科学講座
ページ範囲:P.501 - P.509
文献購入ページに移動Point
・グリオーマ診療でCTやMRIなどの放射線画像を正しく理解するためにはある程度の基礎・理論を知っておくことが望まれる.
・定性画像と定量画像それぞれの利点と欠点,ならびに撮影条件の基本をおさえよう.
・Radiomicsなどの新規技術はこれからもますます発展すると思われるが,過度の期待は禁物である.
・グリオーマ診療でCTやMRIなどの放射線画像を正しく理解するためにはある程度の基礎・理論を知っておくことが望まれる.
・定性画像と定量画像それぞれの利点と欠点,ならびに撮影条件の基本をおさえよう.
・Radiomicsなどの新規技術はこれからもますます発展すると思われるが,過度の期待は禁物である.
参考文献
1)Saito T, et al:Calcification on CT is a simple and valuable preoperative indicator of 1p/19q loss of heterozygosity in supratentorial brain tumors that are suspected grade Ⅱ and Ⅲ gliomas. Brain Tumor Pathol 33:175-182, 2016
2)Ellingson BM, et al;Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee:Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 17:1188-1198, 2015
3)Patel SH, et al:T2-FLAIR mismatch, an imaging biomarker for IDH and 1p/19q status in lower-grade gliomas:a TCGA/TCIA project. Clin Cancer Res 23:6078-6085, 2017
4)Kinoshita M, et al:Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition:initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 25:424-429, 2005
5)Zakhari N, et al:Prospective comparative diagnostic accuracy evaluation of dynamic contrast-enhanced(DCE)vs. dynamic susceptibility contrast(DSC)MR perfusion in differentiating tumor recurrence from radiation necrosis in treated high-grade gliomas. J Magn Reson Imaging 50:573-582, 2019
6)Law M, et al:High-grade gliomas and solitary metastases:differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715-721, 2002
7)Choi C, et al:2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18:624-629, 2012
8)Andronesi OC, et al:Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4, 2012
9)Lazovic J, et al:Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Neuro Oncol 14:1465-1472, 2012
10)Nagashima H, et al:Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro Oncol 18:1559-1568, 2016
H-MRS in 112 hemispheric diffuse gliomas. J Magn Reson Imaging 51:1799-1809, 2020
12)Jain R, et al:“Real world” use of a highly reliable imaging sign:“T2-FLAIR mismatch” for identification of IDH mutant astrocytomas. Neuro Oncol 22:936-943, 2020
13)Broen MPG, et al:The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma:a validation study. Neuro Oncol 20:1393-1399, 2018
14)Kinoshita M, et al:T2-FLAIR mismatch sign is caused by long T1 and T2 of IDH-mutant, 1p19q non-codeleted astrocytoma. Magn Reson Med Sci 20:119-123, 2021
15)Deguchi S, et al:Clinicopathological analysis of T2-FLAIR mismatch sign in lower-grade gliomas. Sci Rep 10:10113, 2020
F-FDG dual-PET-tracer-based target delineation of malignant glioma:evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg 131:676-686, 2019
C-methionine uptake correlates with tumor cell density rather than with microvessel density in glioma:a stereotactic image-histology comparison. Neuroimage 49:2977-2982, 2010
C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316-1322, 1998
C-methionine PET for nonenhancing gliomas. AJNR Am J Neuroradiol 37:44-50, 2016
20)Imahori Y, et al:Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39:325-333, 1998
C-methionine uptake and intraoperative 5-aminolevulinic acid-induced fluorescence as separate index markers of cell density in glioma:a stereotactic image-histological analysis. Cancer 118:1619-1627, 2012
C]methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498-507, 2005
23)Miyatake SI, et al:Boron neutron capture therapy for malignant brain tumors. J Neurooncol 149:1-11, 2020
24)Tatekawa H, et al:Multiparametric MR-PET measurements in hypermetabolic regions reflect differences in molecular status and tumor grade in treatment-naïve diffuse gliomas. J Neurooncol 149:337-346, 2020
25)Albert NL, et al:Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:1199-1208, 2016
F-fluorothymidine(FLT)PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35:2009-2017, 2008
F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol 14:1079-1089, 2012
F]-fluoro-ethyl-L-tyrosine PET:a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 15:341-351, 2013
F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clin Cancer Res 18:1303-1312, 2012
F-FET PET and perfusion-weighted MR imaging:a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55:540-545, 2014
F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med 53:1911-1915, 2012
F-fluorothymidine(FLT)in newly diagnosed glioma based on the 2016 WHO classification. EJNMMI Res 10:44, 2020
F-FET PET compared to contrast-enhanced MRI in glioma patients following adjuvant temozolomide chemotherapy. J Nucl Med:jnumed.120.254243, 2020
F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med 55:198-203, 2014
35)Lohmann P, et al:Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 8:13328, 2018
F-fluoroethyl)-L-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 17:1293-1300, 2015
C-methionine uptake decoupling score, reflects glioma cell infiltration. J Nucl Med 53:1701-1708, 2012
C-methionine positron emission tomography for reliable prediction of tumor cell density in gliomas. J Neurosurg 125:1136-1142, 2016
C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol Imaging 46:1678-1684, 2019
40)Arita H, et al:Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade Ⅱ/Ⅲ gliomas. Sci Rep 8:11773, 2018
41)Choi YS, et al:Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23:304-313
42)Lu CF, et al:Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429-4436, 2018
43)Fukuma R, et al:Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network. Sci Rep 9:20311, 2019
44)Chang K, et al:Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res 24:1073-1081, 2018
掲載誌情報