文献詳細
文献概要
総説
実験的脳動脈瘤モデルを用いた基礎研究の歴史と最新知見
著者: 小関宏和1 村山雄一1
所属機関: 1東京慈恵会医科大学医学部脳神経外科
ページ範囲:P.888 - P.897
文献購入ページに移動Ⅰ はじめに
脳動脈瘤は,発生から増大,破裂に至るまでの経過を予測することが極めて困難な疾患であることから,その病態機序の解明には臨床像を模倣した疾患モデルが不可欠である.臨床での動脈瘤壁の病理学的・遺伝学的所見,および血管画像を用いた流体解析などから,脳動脈瘤が血流ストレス依存的な疾患であり,血管壁に炎症を伴う病変であることが示唆されてきたが1-4),それらの因果関係や,炎症に至るまでの機序については未だ不明な点も多い.この課題を解決すべく,70年ほどの間に実験的な脳動脈瘤モデルの開発が進み,それと相まって疾患に対する理解が深まり,そこから生まれてくる新たな課題に対してそれらのモデルが進化を遂げてきた,あるいは新たなモデルが生み出されてきた.
本稿では,実験的脳動脈瘤モデルの歴史を紐解きながら,それらのバリエーションや特徴について概説する.詳細な病態機序の解説については他稿に譲るが,これらの実験的脳動脈瘤モデルによって得られた最新の知見について紹介する.
脳動脈瘤は,発生から増大,破裂に至るまでの経過を予測することが極めて困難な疾患であることから,その病態機序の解明には臨床像を模倣した疾患モデルが不可欠である.臨床での動脈瘤壁の病理学的・遺伝学的所見,および血管画像を用いた流体解析などから,脳動脈瘤が血流ストレス依存的な疾患であり,血管壁に炎症を伴う病変であることが示唆されてきたが1-4),それらの因果関係や,炎症に至るまでの機序については未だ不明な点も多い.この課題を解決すべく,70年ほどの間に実験的な脳動脈瘤モデルの開発が進み,それと相まって疾患に対する理解が深まり,そこから生まれてくる新たな課題に対してそれらのモデルが進化を遂げてきた,あるいは新たなモデルが生み出されてきた.
本稿では,実験的脳動脈瘤モデルの歴史を紐解きながら,それらのバリエーションや特徴について概説する.詳細な病態機序の解説については他稿に譲るが,これらの実験的脳動脈瘤モデルによって得られた最新の知見について紹介する.
参考文献
1)Chyatte D, et al:Inflammation and intracranial aneurysms. Neurosurgery 45:1137-1146;discussion 1146-1147, 1999
2)Frösen J, et al:Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287-2293, 2004
3)Shojima M, et al:Magnitude and role of wall shear stress on cerebral aneurysm:computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500-2505, 2004
4)Tulamo R, et al:Inflammatory changes in the aneurysm wall:a review. J Neurointerv Surg 10(Suppl 1):i58-i67, 2018
5)German WJ, Black SP:Experimental production of carotid aneurysms. N Engl J Med 250:104-106, 1954
6)Black SP, German WJ:Observations on the relationship between the volume and the size of the orifice of experimental aneurysms. J Neurosurg 17:984-990, 1960
7)Murayama Y, et al:Development of the biologically active Guglielmi detachable coil for the treatment of cerebral aneurysms. Part Ⅱ:an experimental study in a swine aneurysm model. AJNR Am J Neuroradiol 20:1992-1999, 1999
8)Yuki I, et al:Thrombus organization and healing in an experimental aneurysm model. Part Ⅱ. The effect of various types of bioactive bioabsorbable polymeric coils. J Neurosurg 107:109-120, 2007
9)Li CH, et al:Construction of aneurysmal models on a curved vascular segment of a carotid siphon model for testing endovascular devices. World Neurosurg 123:e581-e587, 2019
10)Hashimoto N, et al:Experimentally induced cerebral aneurysms in rats. Surg Neurol 10:3-8, 1978
11)Hassler O:Experimental carotid ligation followed by aneurysmal formation and other morhhological changes in the circle of Willis. J Neurosurg 20:1-7, 1963
12)Hashimoto N, et al:Experimental induction of cerebral aneurysms in monkeys. J Neurosurg 67:903-905, 1987
13)Kim C, et al:Angiographic study of induced cerebral aneurysms in primates. Neurosurgery 27:715-719;discussion 719-720, 1990
14)Morimoto M, et al:Mouse model of cerebral aneurysm:experimental induction by renal hypertension and local hemodynamic changes. Stroke 33:1911-1915, 2002
15)Aoki T, et al:NF-κB is a key mediator of cerebral aneurysm formation. Circulation 116:2830-2840, 2007
16)Aoki T, et al:Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal 10:eaah6037, 2017
17)Aoki T, et al:Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 40:942-951, 2009
18)Jamous MA, et al:Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part Ⅱ:experimental study of the effects of hormone replacement therapy in rats. J Neurosurg 103:1052-1057, 2005
19)Jamous MA, et al:Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part Ⅰ:experimental study of the effect of oophorectomy in rats. J Neurosurg 103:1046-1051, 2005
20)Oka M, et al:The bilateral ovariectomy in a female animal exacerbates the pathogenesis of an intracranial aneurysm. Brain Sci 10:335, 2020
21)Miyamoto T, et al:Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model. J Cereb Blood Flow Metab 37:2795-2805, 2017
22)Miskolczi L, et al:Rapid saccular aneurysm induction by elastase application in vitro. Neurosurgery 41:220-228;discussion 228-229, 1997
23)Miskolczi L, et al:Saccular aneurysm induction by elastase digestion of the arterial wall:a new animal model. Neurosurgery 43:595-600;discussion 600-601, 1998
24)Nuki Y, et al:Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension 54:1337-1344, 2009
25)O'Donaughy TL, Brooks VL:Deoxycorticosterone acetate-salt rats:hypertension and sympathoexcitation driven by increased NaCl levels. Hypertension 47:680-685, 2006
26)Makino H, et al:Pharmacological stabilization of intracranial aneurysms in mice:a feasibility study. Stroke 43:2450-2456, 2012
27)Furukawa H, et al:Mast cell promotes the development of intracranial aneurysm rupture. Stroke 51:3332-3339, 2020
28)Gao L, et al:Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Stroke 39:2085-2090, 2008
29)Tutino VM, et al:Assessment of vascular geometry for bilateral carotid artery ligation to induce early basilar terminus aneurysmal remodeling in rats. Curr Neurovasc Res 13:82-92, 2016
30)Kanematsu Y, et al:Critical roles of macrophages in the formation of intracranial aneurysm. Stroke 42:173-178, 2011
31)Roach MR, et al:The hemodynamic importance of the geometry of bifurcations in the circle of Willis(glass model studies). Stroke 3:255-267, 1972
32)Nakatani H, et al:Cerebral blood flow patterns at major vessel bifurcations and aneurysms in rats. J Neurosurg 74:258-262, 1991
33)Meng H, et al:Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38:1924-1931, 2007
34)Shimizu K, et al:Hemodynamic force as a potential regulator of inflammation-mediated focal growth of saccular aneurysms in a rat model. J Neuropathol Exp Neurol 80:79-88, 2021
35)Oka M, et al:Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Sci Rep 10:8330, 2020
36)Koseki H, et al:Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl Stroke Res 11:80-92, 2020
37)Tanaka K, et al:Relationship between hemodynamic parameters and cerebral aneurysm initiation. Annu Int Conf IEEE Eng Med Biol Soc 2018:1347-1350, 2018
38)Shikata F, et al:Potential influences of gut microbiota on the formation of intracranial aneurysm. Hypertension 73:491-496, 2019
39)Li H, et al:Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nat Commun 11:3218, 2020
40)Hallikainen J, et al:Periodontitis and gingival bleeding associate with intracranial aneurysms and risk of aneurysmal subarachnoid hemorrhage. Neurosurg Rev 43:669-679, 2020
41)Hallikainen J, et al:Role of oral pathogens in the pathogenesis of intracranial aneurysm:review of existing evidence and potential mechanisms. Neurosurg Rev 44:239-247, 2021
42)Korai M, et al:Neutrophil extracellular traps promote the development of intracranial aneurysm rupture. Hypertension 77:2084-2093, 2021
掲載誌情報