icon fsr

文献詳細

雑誌文献

Neurological Surgery 脳神経外科51巻5号

2023年09月発行

文献概要

総説

脳動脈瘤を例に炎症を考える

著者: 栢原智道12 井谷理彦13 青木友浩1

所属機関: 1東京慈恵会医科大学薬理学講座 2埼玉医科大学国際医療センター脳神経外科 3京都大学大学院医学研究科脳神経外科学

ページ範囲:P.931 - P.940

文献購入ページに移動
Ⅰ 炎症とは
1 急性炎症と慢性炎症
 炎症反応は,生体の防御反応の1つであり,組織や細胞を含む生体が内因性ないし外因性に何らかの刺激を受けた際に生じる.これら刺激は,熱や圧といった物理的なものや,酸といった化学的なものなどさまざまな性質のものを含み,由来も細菌感染や外傷など多岐にわたる.また,これら刺激はほとんどの場合には,生体に何らかの害を起こすいわゆる侵害刺激である.炎症反応は,刺激に呼応した生体防御反応として惹起された後に急速に強度を増し,発赤,疼痛,腫脹,熱感を主要症候として形成される.このような炎症反応を,急性炎症反応と呼称する.急性炎症反応は防御反応である一方で,活性酸素種や蛋白分解酵素の過剰産生などのために組織破壊を生じることにより,さまざまな疾患で発症や増悪過程における急性期病態を形作る.その後,侵害刺激の終息や炎症反応の後に炎症に拮抗する抗炎症経路の誘導などにより,炎症反応は急速にその強度を低下させる.
 一方,詳細が明らかとなっていない部分も多いが,炎症が長期間継続し慢性炎症反応を形成する場合がある.急性炎症反応が慢性炎症反応に転換されるためには,炎症が慢性化するための特異的機構が誘導されることが必須である.これには,刺激の長期化,抗炎症経路の抑制,正のフィードバック経路の形成をはじめとする炎症反応の増幅経路の誘導,細胞浸潤や分化による炎症局面構築の変容,獲得免疫の誘導などの複数の機構が含まれる.慢性炎症は,このように単に急性炎症の時間軸で延長したものではなく,質的に異質なものである.また,炎症の程度は低いことが通常であるとともに,種々の細胞種の参加や線維化などの組織構築の変容など急性炎症反応に比しはるかに複雑な反応であり,多くの現象が同時並行的かつ相互作用する反応であると理解されている.慢性炎症は,多くの慢性経過をたどる疾患,例えば癌,耐糖能異常,神経疾患,動脈硬化を含む血管病などに共通の病態形成基盤となっている.

参考文献

1)国立研究開発法人日本医療研究開発機構:炎症の慢性化機構の解明と制御に向けた基盤技術の創出. https://www.amed.go.jp/program/list/16/02/001_04.html(2023年7月10日アクセス)
2)Frösen J, et al:Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg Focus 47:E21, 2019 doi:10.3171/2019.5.FOCUS19234
3)Shimizu K, et al:Intracranial aneurysm as a macrophage-mediated inflammatory disease. Neurol Med Chir(Tokyo)59:126-132, 2019
4)青木友浩,他:炎症を通し脳動脈瘤を理解する.No Shinkei Geka 46:275-294, 2018
5)青木友浩,他:脳動脈瘤のメカノバイオロジー.実験医学 38(増刊7):1096-1104, 2020
6)Chyatte D, et al:Inflammation and intracranial aneurysms. Neurosurgery 45:1137-1146;discussion 1146-1147, 1999
7)Kataoka K, et al:Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30:1396-1401, 1999
8)Frösen J, et al:Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287-2293, 2004
9)Jayaraman T, et al:Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 57:558-564;discussion 558-564, 2005
10)Aoki T, et al:Rat model of intracranial aneurysm:variations, usefullness, and limitations of the hashimoto model. Acta Neurochir Suppl 127:35-41, 2020
11)Aoki T, et al:Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke 38:162-169, 2007
12)Aoki T, et al:Targeting macrophages to treat intracranial aneurysm. Oncotarget 8:104704-104705, 2017
13)Aoki T, et al:Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke 40:942-951, 2009
14)Kanematsu Y, et al:Critical roles of macrophages in the formation of intracranial aneurysm. Stroke 42:173-178, 2011
15)Aoki T, et al:PGE2 -EP2 signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-κB. Br J Pharmacol 163:1237-1249, 2011
16)Aoki T, et al:Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation. Acta Neuropathol Commun 2:34, 2014 doi:10.1186/2051-5960-2-34
17)Starke RM, et al:Tumor necrosis factor-α modulates cerebral aneurysm formation and rupture. Transl Stroke Res 5:269-277, 2014
18)Aoki T, et al:NF-kappaB is a key mediator of cerebral aneurysm formation. Circulation 116:2830-2840, 2007
19)Aoki T, et al:Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms. Sci Signal 10:eaah6037, 2017 doi:10.1126/scisignal.aah6037
20)Aoki T, Narumiya S:Prostaglandins and chronic inflammation. Trends Pharmacol Sci 33:304-311, 2012
21)Lee J, et al:T cell-intrinsic prostaglandin E2-EP2/EP4 signaling is critical in pathogenic TH17 cell-driven inflammation. J Allergy Clin Immunol 143:631-643, 2019
22)Ma X, et al:Definition of prostaglandin E2-EP2 signals in the colon tumor microenvironment that amplify inflammation and tumor growth. Cancer Res 75:2822-2832, 2015
23)Fukuda M, et al:Disruption of P2X4 purinoceptor and suppression of the inflammation associated with cerebral aneurysm formation. J Neurosurg 134:102-114, 2019
24)Koseki H, et al:Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl Stroke Res 11:80-92, 2020
25)Murayama Y, et al:Computational fluid dynamics as a risk assessment tool for aneurysm rupture. Neurosurg Focus 47:E12, 2019 doi:10.3171/2019.4.FOCUS19189
26)Zhou G, et al:Association of wall shear stress with intracranial aneurysm rupture:systematic review and meta-analysis. Sci Rep 7:5331, 2017 doi:10.1038/s41598-017-05886-w
27)Shojima M, et al:Magnitude and role of wall shear stress on cerebral aneurysm:computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35:2500-2505, 2004
28)Boussel L, et al:Aneurysm growth occurs at region of low wall shear stress:patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997-3002, 2008
29)Omodaka S, et al:Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis 34:121-129, 2012
30)Shimizu K, et al:Hemodynamic force as a potential regulator of inflammation-mediated focal growth of saccular aneurysms in a rat model. J Neuropathol Exp Neurol 80:79-88, 2021
31)Aoki T, et al:Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm. Acta Neuropathol Commun 4:48, 2016 doi:10.1186/s40478-016-0318-3
32)Oka M, et al:Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Sci Rep 10:8330, 2020 doi:10.1038/s41598-020-65361-x
33)Miyamoto T, et al:Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model. J Cereb Blood Flow Metab 37:2795-2805, 2017
34)Miyata H, et al:Vasa vasorum formation is associated with rupture of intracranial aneurysms. J Neurosurg 133:789-799, 2020
35)Clower BR, et al:Intracranial vessels lack vasa vasorum. J Neurosurg 61:44-48, 1984
36)Ono I, et al:Hypoxic microenvironment as a crucial factor triggering events leading to rupture of intracranial aneurysm. Sci Rep 13:5545, 2023 doi:10.1038/s41598-023-32001-z
37)Ollikainen E, et al:Mast cells, neovascularization, and microhemorrhages are associated with saccular intracranial artery aneurysm wall remodeling. J Neuropathol Exp Neurol 73:855-864, 2014
38)Kushamae M, et al:Involvement of neutrophils in machineries underlying the rupture of intracranial aneurysms in rats. Sci Rep 10:20004, 2020 doi:10.1038/s41598-020-74594-9
39)Yoshimura Y, et al;SSS Research Group:Statin use and risk of cerebral aneurysm rupture:a hospital-based case-control study in Japan. J Stroke Cerebrovasc Dis 23:343-348, 2014
40)Can A, et al:Lipid-lowering agents and high HDL(high-density lipoprotein)are inversely associated with intracranial aneurysm rupture. Stroke 49:1148-1154, 2018
41)Shimizu K, et al:Candidate drugs for preventive treatment of unruptured intracranial aneurysms:a cross-sectional study. PLoS One 16:e0246865, 2021 doi:10.1371/journal.pone.0246865
42)Hasan DM, et al:Macrophage imaging within human cerebral aneurysms wall using ferumoxytol-enhanced MRI:a pilot study. Arterioscler Thromb Vasc Biol 32:1032-1038, 2012
43)Hasan DM, et al:Imaging aspirin effect on macrophages in the wall of human cerebral aneurysms using ferumoxytol-enhanced MRI:preliminary results. J Neuroradiol 40:187-191, 2013
44)Aoki T, et al;MR Macrophage Imaging Study Investigators:Macrophage imaging of cerebral aneurysms with ferumoxytol:an exploratory study in an animal model and in patients. J Stroke Cerebrovasc Dis 26:2055-2064, 2017

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1251

印刷版ISSN:0301-2603

雑誌購入ページに移動
icon up
あなたは医療従事者ですか?