1)Ozaki K, et al:Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 32:650-654, 2002
2)Hartiala JA, et al:Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur Heart J 42:919-933, 2021
3)Mahajan A, et al:Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet 54:560-572, 2022
4)Mishra A, et al:Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611:115-123, 2022
5)Nikolaev SI, et al:Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:250-261, 2018
6)Hong T, et al:High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 142:23-34, 2019
7)Peyre M, et al:Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. N Engl J Med 385:996-1004, 2021
8)Hong T, et al:Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain 144:2648-2658, 2021
9)Hongo H, et al:Somatic GJA4 gain-of-function mutation in orbital cavernous venous malformations. Angiogenesis 26:37-52, 2023
10)Kuroda S, et al:Moyamoya disease:current concepts and future perspectives. Lancet Neurol 7:1056-1066, 2008
11)Kamada F, et al:A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 56:34-40, 2011
12)Liu W, et al:Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6:e22542, 2011 doi:10.1371/journal.pone.0022542
13)Miyatake S, et al:Homozygous c.14576G > A variant of RNF213 predicts early-onset and severe form of moyamoya disease. Neurology 78:803-810, 2012
14)Nomura S, et al:Genotype-phenotype correlation in long-term cohort of Japanese patients with moyamoya disease. Cerebrovasc Dis 47:105-111, 2019
15)Wang Y, et al:Validation and extension study exploring the role of RNF213 p.R4810K in 2, 877 Chinese moyamoya disease patients. J Stroke Cerebrovasc Dis 30:106071, 2021 doi:10.1016/j.jstrokecerebrovasdis.2021.106071
16)Wu Z, et al:Molecular analysis of RNF213 gene for moyamoya disease in the Chinese Han population. PLoS One 7:e48179, 2012 doi:10.1371/journal.pone.0048179
17)Ge P, et al:Association between p.R4810K variant and long-term clinical outcome in patients with moyamoya disease. Front Neurol 10:662, 2019 doi:10.3389/fneur.2019.00662
in the phenotype of Chinese moyamoya disease. Neurology 94:e678-e686, 2020 doi:10.1212/WNL.0000000000008901
p.R4810K variant for moyamoya disease. Eur J Neurol 28:823-836, 2021
20)Otten EG, et al:Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594:111-116, 2021
21)Sugihara M, et al:The AAA+ ATPase/ubiquitin ligase mysterin stabilizes cytoplasmic lipid droplets. J Cell Biol 218:949-960, 2019
22)Hitomi T, et al:Downregulation of Securin by the variant RNF213 R4810K(rs112735431, G > A)reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochem Biophys Res Commun 438:13-19, 2013
23)Liu W, et al:Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6:e22542, 2011 doi:10.1371/journal.pone.0022542
24)Sonobe S, et al:Temporal profile of the vascular anatomy evaluated by 9.4-T magnetic resonance angiography and histopathological analysis in mice lacking RNF213:a susceptibility gene for moyamoya disease. Brain Res 1552:64-71, 2014
25)Kotani Y, et al:Neuromuscular regulation in zebrafish by a large AAA+ ATPase/ubiquitin ligase, mysterin/RNF213. Sci Rep 5:16161, 2015 doi:10.1038/srep161612
26)Kobayashi H, et al:Biochemical and functional characterization of RNF213(Mysterin)R4810K, a susceptibility mutation of moyamoya disease, in angiogenesis in vitro and in vivo. J Am Heart Assoc 4:e002146, 2015 doi:10.1161/JAHA.115.002146
27)Correction to Lancet Neurol 2022;published online Sept 29. https://doi.org/10.1016/S1474-4422(22)00309-X. Lancet Neurol 21:e10, 2022 doi:10.1016/S1474-4422(22)00411-2
28)Guey S, et al:Rare RNF213 variants in the C-terminal region encompassing the RING-finger domain are associated with moyamoya angiopathy in Caucasians. Eur J Hum Genet 25:995-1003, 2017
29)Hara S, et al:Absence of the RNF213 p.R4810K variant may indicate a severe form of pediatric moyamoya disease in Japanese patients. J Neurosurg Pediatr 29:48-56, 2022
30)Torazawa S, et al:RNF213 p.Arg4810Lys wild type is associated with de novo hemorrhage in asymptomatic hemispheres with moyamoya disease. Transl Stroke Res, 2023[Epub ahead of print] doi:10.1007/s12975-023-01159-z
31)Zanoni P, et al:The genetic landscape and clinical implication of pediatric Moyamoya angiopathy in an international cohort. Eur J Hum Genet 31:784-792, 2023
32)Kuroda S, et al;Research Committee on Moyamoya Disease(Spontaneous Occlusion of Circle of Willis)of the Ministry of Health, Labor, and Welfare, Japan:Diagnostic Criteria for Moyamoya Disease - 2021 Revised Version. Neurol Med Chir(Tokyo)62:307-312, 2022
33)Guey S, et al:Moyamoya disease and syndromes:from genetics to clinical management. Appl Clin Genet 8:49, 2015 doi:10.2147/tacg.s42772
34)Koizumi A, et al:A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med 21:55-70, 2016
variants in non—East Asian patients with sporadic Moyamoya disease. JAMA Neurol 78:993-1003, 2021
36)Pinard A, et al;University of Washington Center for Mendelian Genomics:Rare variants in ANO1, encoding a calcium-activated chloride channel, predispose to moyamoya disease. Brain 146:3616-3623, 2023
37)Guey S, et al:Biallelic variants in NOS3 and GUCY1A3, the two major genes of the nitric oxide pathway, cause moyamoya cerebral angiopathy. Human Genomics 17:24, 2023 doi:10.1186/s40246-023-00471-x
of moyamoya disease. Ann Hum Genet 85:166-177, 2021
39)Banerjee C, Chimowitz MI:Stroke caused by atherosclerosis of the major intracranial arteries. Circ Res 120:502-513, 2017
40)Holmstedt CA, et al:Atherosclerotic intracranial arterial stenosis:risk factors, diagnosis, and treatment. Lancet Neurol 12:1106-1114, 2013
41)Adams HP Jr, et al:Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35-41, 1993
42)White H, et al:Ischemic stroke subtype incidence among whites, blacks, and Hispanics:the Northern Manhattan Study. Circulation 111:1327-1331, 2005
43)Gorelick PB, et al:Large artery intracranial occlusive disease:a large worldwide burden but a relatively neglected frontier. Stroke 39:2396-2399, 2008
44)Suri MFK, et al:Cognitive impairment and intracranial atherosclerotic stenosis in general population. Neurology 90:e1240-e1247, 2018 doi:10.1212/WNL.0000000000005250
45)Liu M, Gutierrez J:Genetic risk factors of intracranial atherosclerosis. Curr Atheroscler Rep 22:13, 2020 doi:10.1007/s11883-020-0831-5
46)Abboud S, et al:Associations of apolipoprotein E gene with ischemic stroke and intracranial atherosclerosis. Eur J Hum Genet 16:955-960, 2008
47)Cui M, et al:Association of ADIPOQ single nucleotide polymorphisms with the risk of intracranial atherosclerosis. Int J Neurosci 127:427-432, 2017
48)Kalita J, et al:Phosphodiesterase 4 D gene polymorphism in relation to intracranial and extracranial atherosclerosis in ischemic stroke. Dis Markers 31:191-197, 2011
49)Liu W, et al:A rare Asian founder polymorphism of Raptor may explain the high prevalence of Moyamoya disease among East Asians and its low prevalence among Caucasians. Environ Health Prev Med 15:94-104, 2010
50)Miyawaki S, et al:Genetic variant RNF213 c.14576G > A in various phenotypes of intracranial major artery stenosis/occlusion. Stroke 44:2894-2897, 2013
51)Miyawaki S, et al:Identification of a genetic variant common to moyamoya disease and intracranial major artery stenosis/occlusion. Stroke 43:3371-3374, 2012
52)Shinya Y, et al:Genetic analysis of ring finger protein 213(RNF213)c.14576G > A in intracranial atherosclerosis of the anterior and posterior circulations. J Stroke Cerebrovasc Dis 26:2638-2644, 2017
53)Bang OY, et al:Adult Moyamoya disease:a burden of intracranial stenosis in East Asians? PLoS One 10:e0130663, 2015 doi:10.1371/journal.pone.0130663
54)Bang OY, et al:A polymorphism in RNF213 is a susceptibility gene for intracranial atherosclerosis. PLoS One 11:e0156607, 2016 doi:10.1371/journal.pone.0156607
55)Kim YJ, et al:Nonatheroscleotic isolated middle cerebral artery disease may be early manifestation of moyamoya disease. Stroke 47:2229-2235, 2016
56)Park MG, et al:RNF213 rs112735431 polymorphism in intracranial artery steno-occlusive disease and moyamoya disease in Koreans. J Neurol Sci 375:331-334, 2017
57)Kim YJ, et al:Are genetic variants associated with the location of cerebral arterial lesions in stroke patients? Cerebrovasc Dis 49:262-268, 2020
58)Kim J, et al:Distribution of intracranial major artery stenosis/occlusion according to RNF213 polymorphisms. Int J Mol Sci 21:1956, 2020 doi:10.3390/ijms21061956
59)Zhang T, et al:Genetic analysis of RNF213 p.R4810K variant in non-moyamoya intracranial artery stenosis/occlusion disease in a Chinese population. Environ Health Prev Med 22:41, 2017 doi:10.1186/s12199-017-0649-0
60)Xue S, et al:The association between the ring finger protein 213 gene R4810K variant and intracranial major artery stenosis/occlusion in the Han Chinese population and high-resolution magnetic resonance imaging findings. Brain Circ 4:33-39, 2018
61)Zhang Q, et al:Association of ring finger protein 213 gene P.R4810k polymorphism with intracranial major artery stenosis/occlusion. J Stroke Cerebrovasc Dis 27:1556-1564, 2018
62)Sun X, et al:Prevalence of RNF213 variants in symptomatic intracranial arterial stenosis/occlusion in China. Mol Genet Genomics 295:635-643, 2020
63)Liao X, et al:Rare variants of RNF213 and moyamoya/non-moyamoya intracranial artery stenosis/occlusion disease risk:a meta-analysis and systematic review. Environ Health Prev Med 22:75, 2017 doi:10.1186/s12199-017-0680-1
64)Cao Y, et al:Frequency of RNF213 p.R4810K, a susceptibility variant for moyamoya disease, and health characteristics of carriers in the Japanese population. Environ Health Prev Med 21:387-390, 2016
65)Hongo H, et al:Comprehensive investigation of RNF213 nonsynonymous variants associated with intracranial artery stenosis. Sci Rep 10:11942, 2020 doi:10.1038/s41598-020-68888-1
66)National Library of Medicine. https://www.ncbi.nlm.nih.gov/snp/(2024年5月10日アクセス)
67)Dofuku S, et al:Genome-wide association study of intracranial artery stenosis followed by phenome-wide association study. Transl Stroke Res 14:322-333, 2023
68)Kubo M, et al:A nonsynonymous SNP in PRKCH(protein kinase C eta)increases the risk of cerebral infarction. Nat Genet 39:212-217, 2007
69)Traylor M, et al:Genetic risk factors for ischaemic stroke and its subtypes(the METASTROKE collaboration):a meta-analysis of genome-wide association studies. Lancet Neurol 11:951-962 2012
70)Malik R, et al:Multiancestry genome-wide association study of 520, 000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50:524-537, 2018
71)Okazaki S, et al:Moyamoya disease susceptibility variant RNF213 p.R4810K increases the risk of ischemic stroke attributable to large-artery atherosclerosis. Circulation 139:295-298, 2019
72)Tabara Y, et al:The association between the Moyamoya disease susceptible gene RNF213 variant and incident cardiovascular disease in a general population:the Nagahama study. J Hypertens 39:2521-2526, 2021
73)Koizumi A, et al:P.R4810K, a polymorphism of RNF213, the susceptibility gene for moyamoya disease, is associated with blood pressure. Environ Health Prev Med 18:121-129, 2013
74)Morimoto T, et al:Significant association of RNF213 p.R4810K, a moyamoya susceptibility variant, with coronary artery disease. PLoS One 12:e0175649, 2017 doi:10.1371/journal.pone.0175649
75)Hiraide T, et al:Poor outcomes in carriers of the RNF213 variant(p.Arg4810Lys)with pulmonary arterial hypertension. J Heart Lung Transplant 39:103-112, 2020
76)Gamou S, et al:Genetics in pulmonary arterial hypertension in a large homogeneous Japanese population. Clin Genet 94:70-80, 2018
77)Chang SA, et al:Nonsyndromic peripheral pulmonary artery stenosis is associated with homozygosity of RNF213 p.Arg4810Lys regardless of co-occurrence of Moyamoya disease. Chest 153:404-413, 2018
78)Hara S, et al:De novo renal artery stenosis developed in initially normal renal arteries during the long-term follow-up of patients with moyamoya disease. J Stroke Cerebrovasc Dis 29:104786, 2020 doi:10.1016/j.jstrokecerebrovasdis.2020.104786
79)Baek JW, et al:Prevalence and clinical implications of renal artery stenosis in pediatric moyamoya disease. Eur J Paediatr Neurol 20:20-24, 2016
80)Bakker MK, et al:Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat Genet 52:1303-1313, 2020
81)Karasozen Y, et al:Somatic PDGFRB activating variants in fusiform cerebral aneurysms. Am J Hum Genet 104:968-976, 2019
82)Shima Y, et al:Increased PDGFRB and NF-κB signaling caused by highly prevalent somatic mutations in intracranial aneurysms. Sci Transl Med 15:eabq7721, 2023 doi:10.1126/scitranslmed.abq7721
83)Winkler EA, et al:A single-cell atlas of the normal and malformed human brain vasculature. Science 375:eabi7377, 2022 doi:10.1126/science.abi7377
84)Robinson JR, et al:Natural history of the cavernous angioma. J Neurosurg 75:709-714, 1991
85)Al-Holou WN, et al:Natural history and imaging prevalence of cavernous malformations in children and young adults. J Neurosurg Pediatr 9:198-205, 2012
86)Maddaluno L, et al:EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498:492-496, 2013
87)Zhou Z, et al:Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532:122-126, 2016
88)Ren AA, et al:PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594:271-276, 2021
89)Geraldo AF, et al:Natural history of familial cerebral cavernous malformation syndrome in children:a multicenter cohort study. Neuroradiology 65:401-414, 2023
90)Laberge-le Couteulx S, et al:Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189-193, 1999
91)Sahoo T, et al:Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations(CCM1). Hum Mol Genet 8:2325-2333, 1999
92)Liquori CL, et al:Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am J Hum Genet 73:1459-1464, 2003
93)Denier C, et al:Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am J Hum Genet 74:326-337, 2004
94)Bergametti F, et al:Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 76:42-51, 2005
95)Denier C, et al:Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60:550-556, 2006
96)Stahl S, et al:Novel CCM1, CCM2, and CCM3 mutations in patients with cerebral cavernous malformations:in-frame deletion in CCM2 prevents formation of a CCM1/CCM2/CCM3 protein complex. Hum Mutat 29:709-717, 2008
97)Padarti A, et al:Recent advances in cerebral cavernous malformation research. Vessel Plus 2:21, 2018 doi:10.20517/2574-1209.2018.34
98)Abou-Fadel J, et al:CCM signaling complex(CSC)couples both classic and non-classic Progesterone receptor signaling. Cell Commun Signal 20:120, 2022 doi:10.1186/s12964-022-00926-z
99)Akers AL, et al:Biallelic somatic and germline mutations in cerebral cavernous malformations(CCMs):evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18:919-930, 2009
100)Knudson AG Jr:Mutation and cancer:statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820-823, 1971
101)Ren J, et al:Somatic variants of MAP3K3 are sufficient to cause cerebral and spinal cord cavernous malformations. Brain 146:3634-3647, 2023
102)Weng J, et al:Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am J Hum Genet 108:942-950, 2021
103)Snellings DA, et al:Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. Nat Cardiovasc Res 1:246-252, 2022
104)Riant F, et al:CCM3 mutations are associated with early-onset cerebral hemorrhage and multiple meningiomas. Mol Syndromol 4:165-172, 2013
105)Fox CK, et al:Seizure incidence rates in children and adults with familial cerebral cavernous malformations. Neurology 97:e1210-e1216, 2021 doi:10.1212/WNL.0000000000012569
106)Robinson JR Jr, et al:Factors predisposing to clinical disability in patients with cavernous malformations of the brain. Neurosurgery 32:730-736, 1993
107)Zabramski JM, et al:The natural history of familial cavernous malformations:results of an ongoing study. J Neurosurg 80:422-432, 1994
108)Jeon JS, et al:A risk factor analysis of prospective symptomatic haemorrhage in adult patients with cerebral cavernous malformation. J Neurol Neurosurg Psychiatry 85:1366-1370, 2014
109)Labauge P, et al:Genetics of cavernous angiomas. Lancet Neurol 6:237-244, 2007
110)Clatterbuck RE, et al:The nature and fate of punctate(type IV)cavernous malformations. Neurosurgery 49:26-32, 2001
111)Gross BA, et al:The natural history of cerebral cavernous malformations in children. J Neurosurg Pediatr 17:123-128, 2016
112)Dammann P, et al:Correlation of the venous angioarchitecture of multiple cerebral cavernous malformations with familial or sporadic disease:a susceptibility-weighted imaging study with 7-Tesla MRI. J Neurosurg 126:570-577, 2017
113)He Y, et al:Stabilization of VEGFR2 signaling by cerebral cavernous malformation 3 is critical for vascular development. Sci Signal 3:ra26, 2010 doi:10.1126/scisignal.2000722
114)Whitehead KJ, et al:Ccm1 is required for arterial morphogenesis:implications for the etiology of human cavernous malformations. Development 131:1437-1448, 2004
115)Whitehead KJ, et al:The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15:177-184, 2009
116)Boulday G, et al:Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis:implications for human cerebral cavernous malformations. Dis Model Mech 2:168-177, 2009
117)Cunningham K, et al:Conditional deletion of Ccm2 causes hemorrhage in the adult brain:a mouse model of human cerebral cavernous malformations. Hum Mol Genet 20:3198-3206, 2011
118)Phillips CM, et al:Cerebral cavernous malformation pathogenesis:investigating lesion formation and progression with animal models. Int J Mol Sci 23:5000, 2022 doi:10.3390/ijms23095000
119)Shenkar R, et al:Rho kinase inhibition blunts lesion development and hemorrhage in murine models of aggressive Pdcd10/Ccm3 disease. Stroke 50:738-744, 2019
120)Polster SP, et al:Atorvastatin treatment of cavernous angiomas with symptomatic hemorrhage exploratory proof of concept(AT CASH EPOC)trial. Neurosurgery 85:843-853, 2019
121)McDonald DA, et al:Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke 43:571-574, 2012
122)Shenkar R, et al:RhoA kinase inhibition with Fasudil versus simvastatin in murine models of cerebral cavernous malformations. Stroke 48:187-194, 2017
123)Léauté-Labrèze C, et al:A randomized, controlled trial of oral propranolol in infantile hemangioma. N Engl J Med 372:735-746, 2015
124)Zabramski JM, et al:Propranolol treatment of cavernous malformations with symptomatic hemorrhage. World Neurosurg 88:631-639, 2016
125)Li W, et al:Propranolol inhibits cavernous vascular malformations by β1 adrenergic receptor antagonism in animal models. J Clin Invest 131:e144893, 2021 doi:10.1172/JCI144893
126)de Paiva BBM, et al:Potential and limitations of machine meta-learning(ensemble)methods for predicting COVID-19 mortality in a large inhospital Brazilian dataset. Sci Rep 13:3463, 2023 doi:10.1038/s41598-023-28579-z
127)Lanfranconi S, et al:Safety and efficacy of propranolol for treatment of familial cerebral cavernous malformations(Treat_CCM):a randomised, open-label, blinded-endpoint, phase 2 pilot trial. Lancet Neurol 22:35-44, 2023
128)Gibson CC, et al:Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation. Circulation 131:289-299, 2015
129)Bravi L, et al:Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci U S A 112:8421-8426, 2015
130)Choi JP, et al:Ponatinib(AP24534)inhibits MEKK3-KLF signaling and prevents formation and progression of cerebral cavernous malformations. Sci Adv 4:eaau0731, 2018 doi:10.1126/sciadv.aau0731
131)Brinjikji W, et al:Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia:a systematic review and meta-analysis. J Neurosurg 127:302-310, 2017
132)McAllister KA, et al:Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345-351, 1994
133)Johnson DW, et al:Mutations in the activin receptor—like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189-195, 1996
134)Gallione CJ, et al:A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4(SMAD4). Lancet 363:852-859, 2004
135)Richards-Yutz J, et al:Update on molecular diagnosis of hereditary hemorrhagic telangiectasia. Hum Genet 128:61-77, 2010
136)Bernabeu C, et al:Potential second-hits in hereditary hemorrhagic telangiectasia. J Clin Med 9:3571, 2020 doi:10.3390/jcm9113571
137)Gallione CJ, et al:SMAD4 mutations found in unselected HHT patients. J Med Genet 43:793-797, 2006
138)Valdivielso-Ramos M, et al:Capillary malformation-arteriovenous malformation syndrome:a multicentre study. Clin Exp Dermatol 46:300-305, 2021
139)Revencu N, et al:RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat 34:1632-1641, 2013
140)Amyere M, et al:Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation(CM-AVM2)deregulating RAS-MAPK signaling. Circulation 136:1037-1048, 2017
141)Weinsheimer S, et al:Genome-wide association study of sporadic brain arteriovenous malformations. J Neurol Neurosurg Psychiatry 87:916-923, 2016
142)Pawlikowska L, et al:Polymorphisms in transforming growth factor-β-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations. Stroke 36:2278-2280, 2005
143)Kim H, et al:Population stratification in a case-control study of brain arteriovenous malformation in Latinos. Neuroepidemiology 31:224-228, 2008
144)Kim H, et al:Common variants in interleukin-1-Beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc Dis 27:176-182, 2009
145)Zhao Y, et al:The rs522616 polymorphism in the matrix metalloproteinase-3(MMP-3)gene is associated with sporadic brain arteriovenous malformation in a Chinese population. J Clin Neurosci 17:1568-1572, 2010
146)Chen H, et al:Polymorphisms of the vascular endothelial growth factor A gene and susceptibility to sporadic brain arteriovenous malformation in a Chinese population. J Clin Neurosci 18:549-553, 2011
147)Jiang N, et al:Susceptible gene single nucleotide polymorphism and hemorrhage risk in patients with brain arteriovenous malformation. J Clin Neurosci 18:1279-1281, 2011
148)Mikhak B, et al:Angiopoietin-like 4(ANGPTL4)gene polymorphisms and risk of brain arteriovenous malformations. Cerebrovasc Dis 31:338-345, 2011
149)Fontanella M, et al:Brain arteriovenous malformations are associated with interleukin-1 cluster gene polymorphisms. Neurosurgery 70:12-17, 2012
150)Erkinova SA, et al:Angiopoietin-like proteins 4(ANGPTL4)gene polymorphisms and risk of brain arteriovenous malformation. J Stroke Cerebrovasc Dis 27:908-913, 2018
151)Li H, et al:De novo germline and somatic variants convergently promote endothelial-to-mesenchymal transition in simplex brain arteriovenous malformation. Circ Res 129:825-839, 2021
152)Snellings DA, et al:Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in bi-allelic loss of ENG or ACVRL1. Am J Hum Genet 105:894-906, 2019
153)Macmurdo CF, et al:RASA1 somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation(CM/AVM)syndrome. Am J Med Genet A 170:1450-1454, 2016
154)Lapinski PE, et al:Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. Eur J Med Genet 61:11-16, 2018
155)Nikolaev SI, et al:Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:250-261, 2018
156)Hong T, et al:High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 142:23-34, 2019
157)Priemer DS, et al:Activating KRAS mutations in arteriovenous malformations of the brain:frequency and clinicopathologic correlation. Hum Pathol 89:33-39, 2019
158)Goss JA, et al:Somatic mutations in intracranial arteriovenous malformations. PLoS One 14:e0226852, 2019 doi:10.1371/journal.pone.0226852
159)Oka M, et al:KRAS G12D or G12V mutation in human brain arteriovenous malformations. World Neurosurg 126:e1365-e1373, 2019 doi:10.1016/j.wneu.2019.03.105
160)Bameri O, et al:KRAS/BRAF mutations in brain arteriovenous malformations:a systematic review and meta-analysis. Interv Neuroradiol 27:539-546, 2021
161)Bayrak-Toydemir P, et al:Genotype-phenotype correlation in hereditary hemorrhagic telangiectasia:mutations and manifestations. Am J Med Genet A 140:463-470, 2006
162)Rossi E, et al:Endoglin as an adhesion molecule in mature and progenitor endothelial cells:a function beyond TGF-β. Front Med(Lausanne)6:10, 2019 doi:10.3389/fmed.2019.00010
163)McDonald J, et al:Hereditary hemorrhagic telangiectasia:genetics and molecular diagnostics in a new era. Front Genet 6:1, 2015 doi:10.3389/fgene.2015.00001
164)Abdalla SA, et al:Hereditary haemorrhagic telangiectasia:current views on genetics and mechanisms of disease. J Med Genet 43:97-110, 2006
165)Bourdeau A, et al:Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc Med 10:279-285, 2000
166)Tual-Chalot S, et al:Mouse models of hereditary hemorrhagic telangiectasia:recent advances and future challenges. Front Genet 6:25, 2015 doi:10.3389/fgene.2015.00025
167)Ruiz-Llorente L, et al:Endoglin and alk1 as therapeutic targets for hereditary hemorrhagic telangiectasia. Expert Opin Ther Targets 21:933-947, 2017
168)Urness LD, et al:Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26:328-331, 2000
169)Li DY, et al:Defective angiogenesis in mice lacking endoglin. Science 284:1534-1537, 1999
170)Ola R, et al:SMAD4 prevents flow induced arteriovenous malformations by inhibiting casein kinase 2. Circulation 138:2379-2394, 2018
171)Gil M, et al:Hydroids(Cnidaria, Hydrozoa)from Mauritanian coral mounds. Zootaxa 4878:zootaxa.4878.3.2, 2020 doi:10.11646/zootaxa.4878.3.2
172)Gasper R, et al:The Ras switch in structural and historical perspective. Biol Chem 401:143-163, 2019
173)Bai J, et al:Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res 42:405-415, 2014
174)Henkemeyer M, et al:Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature 377:695-701, 1995
175)Gerety SS, et al:Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403-414, 1999
176)Simanshu DK, et al:RAS proteins and their regulators in human disease. Cell 170:17-33, 2017
177)Meadows KN, et al:Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276:49289-49298, 2001
178)Fish JE, et al:Somatic gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but not PI3K signaling. Circ Res 127:727-743, 2020
179)Park ES, et al:Selective endothelial hyperactivation of oncogenic KRAS induces brain arteriovenous malformations in mice. Ann Neurol 89:926-941, 2021