1)Tanaka S, et al:Crosstalk between the nervous system and the kidney. Kidney Int 97:466-476, 2020
2)Kurella M, et al:Chronic kidney disease and cognitive impairment in the elderly:the health, aging, and body composition study. J Am Soc Nephrol 16:2127-2133, 2005
3)Yaffe K, et al:Chronic kidney disease and cognitive function in older adults:findings from the chronic renal insufficiency cohort cognitive study. J Am Geriatr Soc 58:338-345, 2010
4)Ito S, et al:Strain vessel hypothesis:a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk. Hypertens Res 32:115-121, 2009
5)Chen YC, et al:Chronic kidney disease itself is a causal risk factor for stroke beyond traditional cardiovascular risk factors:a nationwide cohort study in Taiwan. PLoS One 7:e36332, 2012 doi:10.1371/journal.pone.0036332
6)Koren-Morag N, et al:Renal dysfunction and risk of ischemic stroke or TIA in patients with cardiovascular disease. Neurology 67:224-228, 2006
7)Lee M, et al:Low glomerular filtration rate and risk of stroke:meta-analysis. BMJ 341:c4249, 2010 doi:10.1136/bmj.c4249
8)Ninomiya T, et al:Proteinuria and stroke:a meta-analysis of cohort studies. Am J Kidney Dis 53:417-425, 2009
9)Khatri M, et al:Chronic kidney disease is associated with white matter hyperintensity volume:the Northern Manhattan Study(NOMAS). Stroke 38:3121-3126, 2007
10)Weiner DE, et al:Albuminuria, cognitive functioning, and white matter hyperintensities in homebound elders. Am J Kidney Dis 53:438-447, 2009
11)Seliger SL, et al:Moderate renal impairment and risk of dementia among older adults:the Cardiovascular Health Cognition Study. J Am Soc Nephrol 15:1904-1911, 2004
12)Watanabe K, et al:Cerebro-renal interactions:impact of uremic toxins on cognitive function. Neurotoxicology 44:184-193, 2014
13)De Deyn PP, et al:Nitric oxide in uremia:effects of several potentially toxic guanidino compounds. Kidney Int Suppl 84:S25-S28, 2003
14)D'Hooge R, et al:Involvement of voltage- and ligand-gated Ca2+ channels in the neuroexcitatory and synergistic effects of putative uremic neurotoxins. Kidney Int 63:1764-1775, 2003
15)Kielstein JT, et al:ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke 37:2024-2029, 2006
16)Kielstein H, et al:Role of the endogenous nitric oxide inhibitor asymmetric dimethylarginine(ADMA)and brain-derived neurotrophic factor(BDNF)in depression and behavioural changes:clinical and preclinical data in chronic kidney disease. Nephrol Dial Transplant 30:1699-1705, 2015
17)Six I, et al:Effects of phosphate on vascular function under normal conditions and influence of the uraemic state. Cardiovasc Res 96:130-139, 2012
18)Jono S, et al:Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10-E17, 2000 doi:10.1161/01.res.87.7.e10
19)Steitz SA, et al:Smooth muscle cell phenotypic transition associated with calcification:upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res 89:1147-1154, 2001
20)Speer MY, et al:Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104:733-741, 2009
21)Tyson KL, et al:Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23:489-494, 2003
22)Li X, et al:Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res 98:905-912, 2006
23)Crouthamel MH, et al:Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells:redundant roles for PiT-1 and PiT-2. Arterioscler Thromb Vasc Biol 33:2625-2632, 2013
24)Marebwa BK, et al:Fibroblast growth factor23 is associated with axonal integrity and neural network architecture in the human frontal lobes. PLoS One 13:e0203460, 2018 doi:10.1371/journal.pone.0203460
25)Wright CB, et al:Plasma FGF23 and the risk of stroke:the Northern Manhattan Study(NOMAS). Neurology 82:1700-1706, 2014
26)Wright CB, et al:Fibroblast growth factor 23 is associated with subclinical cerebrovascular damage:the Northern Manhattan Study. Stroke 47:923-928, 2016
27)Muteliefu G, et al:Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplant 24:2051-2058, 2009
28)Adijiang A, et al:Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant 23:1892-1901, 2008
29)Stinghen AE, et al:Differential effects of indoxyl sulfate and inorganic phosphate in a murine cerebral endothelial cell line(bEnd.3). Toxins(Basel)6:1742-1760, 2014
30)Shroff R, et al:HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol 25:2658-2668, 2014
31)Zewinger S, et al:HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction. J Am Soc Nephrol 25:1073-1082, 2014
32)Speer T, et al:Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38:754-768, 2013
33)Holzer M, et al:Uremia alters HDL composition and function. J Am Soc Nephrol 22:1631-1641, 2011
34)Tanaka S, et al:Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci U S A 118:e2021758118, 2021 doi:10.1073/pnas.2021758118
35)山本伸也,柳田素子:腎臓病の病態理解の進歩と最新診療.日内会誌113:452-459, 2024
36)Tanaka S, et al:Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int 94:912-925, 2018
37)日本腎臓学会:CKD治療におけるSGLT2阻害薬の適正使用に関するrecommendation.2022 https://jsn.or.jp/medic/data/SGLT2_recommendation20221129.pdf(2024年7月17日アクセス)
38)倉田 遊,他:PHD阻害薬 腎性貧血治療薬としての開発状況ならびに低酸素に対する腎保護薬としての期待.日腎会誌61:490-498, 2019
39)坂下 碧,南学正臣:腎性貧血治療薬HIF-PH阻害薬.日老医誌59:263-274, 2022
40)日本腎臓学会:HIF-PH阻害薬適正使用に関するrecommendation.2020 https://jsn.or.jp/data/HIF-PH_recommendation.pdf(2024年7月17日アクセス)
41)日本腎臓学会(編):エビデンスに基づくCKD診療ガイドライン2023.東京医学社,東京,2023
42)Sugahara M, et al:Prolyl hydroxylase domain inhibitor protects against metabolic disorders and associated kidney disease in obese type 2 diabetic mice. J Am Soc Nephrol 31:560-577, 2020