1)Hsu PD, Lander ES, Zhang F:Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262-1278, 2014
2)Mojica FJ, Diez-Villaseñor C, Soria E et al:Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244-246, 2000
3)Mali P, Yang L, Esvelt KM et al:RNA-guided human genome engineering via Cas9. Science 339:823-826, 2013
4)Jacobson SG, Cideciyan AV, Aguirre GD et al:Improvement in vision:a new goal for treatment of hereditary retinal degenerations. Expert Opin Orphan Drugs 3:563-575, 2015
5)Oishi M, Oishi A, Gotoh N et al:Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by next-generation sequencing. Invest Ophthalmol Vis Sci 55:7369-7375, 2014
genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144-149, 2016
CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24:556-563, 2016
editing of the human mutant Rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5:e389, 2016
9)Giannelli SG, Luoni M, Castoldi V et al:Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 27:761-779, 2018
10)Tsai YT, Wu WH, Lee TT et al:Clustered regularly interspaced short palindromic repeats-based genome surgery for the treatment of autosomal dominant retinitis pigmentosa. Ophthalmology 125:1421-1430, 2018
11)Committee for the National registry of retinoblastoma:The national registry of retinoblastoma in Japan(1983-2014). Jpn J Ophthalmol 62:409-423, 2018