icon fsr

文献詳細

雑誌文献

臨床眼科74巻9号

2020年09月発行

文献概要

連載 今月の話題

AIの角膜形状解析への応用

著者: 神谷和孝1

所属機関: 1北里大学医療衛生学部視覚生理学

ページ範囲:P.1077 - P.1083

文献購入ページに移動
 近年,人工知能(AI)による画像診断が注目されており,眼科診療でも画像診断補助や遠隔地診療への応用が期待されるが,網膜疾患や緑内障診断が主体であり,前眼部疾患におけるAIの応用は十分でない。本来,円錐角膜の診断は角膜形状解析が主体となっており,画像診断を得意とするAIが他疾患より応用しやすいと考えられる。本稿では,円錐角膜診断における角膜形状解析へのAI応用について概説したい。

参考文献

1)Godefrooij DA, de Wit GA, Uiterwaal CS et al:Age-specific Incidence and prevalence of keratoconus:A Nationwide Registration Study. Am J Ophthalmol 175:169-172, 2017
2)Kamiya K, Ayatsuka Y, Kato Y et al:Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography:a diagnostic accuracy study. BMJ Open 9:e031313, 2019
3)Rabinowitz YS:Keratoconus. Surv Ophthalmol 42:297-319, 1998
4)Krumeich JH, Kezirian GM:Circular keratotomy to reduce astigmatism and improve vision in stage Ⅰ and Ⅱ keratoconus. J Refract Surg 25:357-365, 2009
5)Maeda N, Klyce SD, Smolek MK et al:Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci 35:2749-2757, 1994
6)Maeda N, Klyce SD, Smolek MK:Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci 36:1327-1335, 1995
7)Smolek MK, Klyce SD:Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci 38:2290-2299, 1997
8)Accardo PA, Pensiero S:Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inform 35:151-159, 2002
9)Souza MB, Medeiros FW, Souza DB et al:Evaluation of machine learning classifiers in keratoconus detection from Orbscan Ⅱ examinations. Clinics(Sao Paulo) 65:1223-1228, 2010
10)Arbelaez MC, Versaci F, Vestri G et al:Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 119:2231-2238, 2012
11)Smadja D, Touboul D, Cohen A et al:Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol 156:237-246, 2013
12)Kovács I, Miháltz K, Kránitz K et al:Accuracy of machine learning classifiers using bilateral data from a scheimpflug camera for identifying eyes with preclinical signs of keratoconus. J Cataract Refract Surg 42:275-283, 2016
13)Ruiz Hidalgo I, Rodriguez P, Rozema JJ et al:Evaluation of a machine-learning classifier for keratoconus detection based on scheimpflug tomography. Cornea 35:827-832, 2016
14)Ruiz Hidalgo I, Rozema JJ, Saad A et al:Validation of an objective keratoconus detection system implemented in a Scheimpflug Tomographer and comparison with other methods. Cornea 36:689-695, 2017
15)Yousefi S, Yousefi E, Takahashi H et al:Keratoconus severity identification using unsupervised machine learning. PLoS One 13:e0205998, 2018
16)Dos Santos VA, Schmetterer L, Stegmann H et al:CorneaNet:fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning. Biomed Opt Express 10:622-641, 2019
17)Issarti I, Consejo A, Jiménez-García M et al:Computer aided diagnosis for suspect keratoconus detection. Comput Biol Med 109:33-42, 2019
18)Matsugu M, Mori K, Mitari Y et al:Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw 16:555-559, 2003
19)Samy El Gendy NM, Li Y, Zhang X et al:Repeatability of pachymetric mapping using Fourier domain optical coherence tomography in corneas with opacities. Cornea 31:418-423, 2012
20)Ishii R, Kamiya K, Igarashi A et al:Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis. Cornea 31:253-258, 2012
21)Kamiya K, Ishii R, Shimizu K et al:Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes with respect to the stage of Amsler-Krumeich classification. Br J Ophthalmol 98:459-463, 2014
22)Russakoff DB, Lamin A, Oakley JD et al:Deep learning for prediction of AMD progression:A Pilot Study. Invest Ophthalmol Vis Sci 60:712-722, 2019
23)Arcadu F, Benmansour F, Maunz A et al:Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit Med 2:92, 2019
24)Wen JC, Lee CS, Keane PA et al:Forecasting future humphrey visual fields using deep learning. PLoS One 14:e0214875, 2019

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1308

印刷版ISSN:0370-5579

雑誌購入ページに移動
icon up
あなたは医療従事者ですか?