1)Oishi M, Oishi A, Gotoh N et al:Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by next-generation sequencing. Invest Ophthalmol Vis Sci 55:7369-7375, 2014
mutations is the most prevalent inherited retinal dystrophy in Japanese populations. J Ophthalmol 2015:819760, 2015
3)Koyanagi Y, Akiyama M, Nishiguchi KM et al:Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J Med Genet 56:662-670, 2019
4)Yoon CK, Yu HG:The structure-function relationship between macular morphology and visual function analyzed by optical coherence tomography in retinitis pigmentosa. J Ophthalmol 2013:821460, 2013
5)Battu R, Khanna A, Hegde B et al:Correlation of structure and function of the macula in patients with retinitis pigmentosa. Eye(Lond)29:895-901, 2015
6)Aizawa S, Mitamura Y, Baba T et al:Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye(Lond)23:304-308, 2009
7)Hariri AH, Zhang HY, Ho A et al:Quantification of ellipsoid zone changes in retinitis pigmentosa using en face spectral domain-optical coherence tomography. JAMA Ophthalmol 134:628-635, 2006
8)Smith TB, Parker M, Steinkamp PN et al:Structure-function modeling of optical coherence tomography and standard automated perimetry in the retina of patients with autosomal dominant retinitis pigmentosa. PLoS One 11:e0148022, 2016
9)Murakami Y, Funatsu J, Nakatake S et al:Relations among foveal blood flow, retinal-choroidal structure, and visual function in retinitis pigmentosa. Invest Ophthalmol Vis Sci 59:1134-1143, 2018
10)Sayo A, Ueno S, Kominami T et al:Significant relationship of visual field sensitivity in central 10° to thickness of retinal layers in retinitis pigmentosa. Invest Ophthalmol Vis Sci 59:3469-3475, 2018
11)Colombo L, Montesano G, Sala B et al:Comparison of 5-year progression of retinitis pigmentosa involving the posterior pole among siblings by means of SD-OCT:a retrospective study. BMC Ophthalmol 18:153, 2018
12)Fujiwara K, Ikeda Y, Murakami Y et al:Assessment of central visual function in patients with retinitis pigmentosa. Sci Rep 8:8070, 2018
13)Funatsu J, Murakami Y, Nakatake S et al:Direct comparison of retinal structure and function in retinitis pigmentosa by co-registering microperimetry and optical coherence tomography. PLoS One 14:e0226097, 2019
14)Son G, Lee S, Kim YJ et al:Correlation between visual function and structural characteristics of the macula in advanced retinitis pigmentosa. Ophthalmologica 242:22-30, 2019
15)Adachi K, Takahashi S, Yamauchi K et al:Optical coherence tomography of retinal degeneration in Royal College of Surgeons rats and its correlation with morphology and electroretinography. PLoS One 11:e0162835, 2016
16)Monai N, Yamauchi K, Tanabu R et al:Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography. PLoS One 13:e0193778, 2018
17)Yamauchi K, Tanabu R, Monai N et al:The spectral-domain optical coherence tomography findings associated with the morphological and electrophysiological changes in a rat model of retinal degeneration, rhodopsin S334ter-4 rats. Biomed Res Int 2018:5174986, 2018
mice. PLoS One 14:e0210439, 2019
19)Nakazawa M, Hara A, Ishiguro SI:Optical coherence tomography of animal models of retinitis pigmentosa:From animal studies to clinical applications. Biomed Res Int 2019:8276140, 2019
20)Hasegawa T, Ikeda HO, Nakano N et al:Changes in morphology and visual function over time in mouse models of retinal degeneration:an SD-OCT, histology, and electroretinography study. Jpn J Ophthalmol 60:111-125, 2016
21)Hara A, Nakazawa M, Saito M et al:The qualitative assessment of optical coherence tomography and the central retinal sensitivity in patients with retinitis pigmentosa. PLoS One 15:e0232700, 2020