1)Coleman AL:Glaucoma. Lancet 354:1803-1810, 1999
2)Anderson DR:Glaucoma:the damage caused by pressure. XLVI Edward Jackson memorial lecture. Am J Ophthalmol 108:485-495, 1989
3)Civan MM, Macknight AD:The ins and outs of aqueous humour secretion. Exp Eye Res 78:625-631, 2004
4)Carreon T, van der Merwe E, Fellman RL et al:Aqueous outflow-A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res 57:108-133, 2017
5)Wiederholt M, Thieme H, Stumpff F:The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res 19:271-295, 2000
6)de Kater AW, Shahsafaei A, Epstein DL:Localization of smooth muscle and nonmuscle actin isoforms in the human aqueous outflow pathway. Invest Ophthalmol Vis Sci 33:424-429, 1992
7)Braunger BM, Fuchshofer R, Tamm ER:The aqueous humor outflow pathways in glaucoma:a unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm 95:173-181, 2015
8)Xin C, Wang RK, Song S et al:Aqueous outflow regulation:optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res 158:171-186, 2017
9)O'Callaghan J, Cassidy PS, Humphries P:Open-angle glaucoma:therapeutically targeting the extracellular matrix of the conventional outflow pathway. Expert Opin Ther Targets 21:1037-1050, 2017
10)Gottanka J, Chan D, Eichhorn M et al:Effects of TGF-beta2 in perfused human eyes. Invest Ophthalmol Vis Sci 45:153-158, 2004
11)Mettu P, Deng PF, Misra UK et al:Role of lysophopholipid growth factors in the modulation of aqueous humor outflow facility. Invest Ophthalmol Vis Sci 45:2263-2271, 2004
12)Stamer WD, Read AT, Sumida GM et al:Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes 89:980-988, 2009
13)Sumida GM, Stamer WD:Sphingosine-1-phosphate enhancement of cortical actomyosin organization in cultured human Schlemm's canal endothelial cell monolayers. Invest Ophthalmol Vis Sci 51:6633-6638, 2010
14)Stamer WD, Acott TS:Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol 23:135-143, 2012
15)Inatani M, Tanihara H, Katsuta H et al:Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 239:109-113, 2001
16)Fuchshofer R1, Tamm ER:The role of TGF-β in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347:279-290, 2012
17)Maekawa M, Ishizaki T, Boku S et al:Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895-898, 1999
18)Rao PV, Pattabiraman PP, Kopczynski C:Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma:bench to bedside research. Exp Eye Res 158:23-32, 2017
19)Honjo M, Tanihara H:Impact of the clinical use of ROCK inhibitor on the pathogenesis and treatment of glaucoma. Jpn J Ophthalmol 62:109-126, 2018
20)Picht G, Welge-Luessen U, Grehn F et al:Transforming growth factor beta 2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol 239:199-207, 2001
21)Guo T, Guo L, Fan L et al:Aqueous humor levels of TGFβ2 and SFRP1 in different types of glaucoma. BMC Ophthalmol 19:170, 2019
22)Honjo M, Igarashi N, Kurano M et al:Autotaxin-lysophosphatidic acid pathway in intraocular pressure regulation and glaucoma subtypes. Invest Ophthalmol Vis Sci 59:693-701, 2018
23)Honjo M, Igarashi N, Nishida J et al:Role of the Autotaxin-LPA pathway in dexamethasone-induced fibrotic responses and extracellular matrix production in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 59:21-30, 2018
24)Igarashi N, Honjo M, Yamagishi R et al:Involvement of autotaxin in the pathophysiology of elevated intraocular pressure in Posner-Schlossman syndrome. Sci Rep 10:6265, 2020