1)Quigley HA, Addicks EM, Green WR et al:Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 99:635-649, 1981
2)Park SC, De Moraes CG, Teng CC et al:Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology 119:3-9, 2012
3)Tatham AJ, Miki A, Weinreb RN et al:Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology 121:110-118, 2014
4)Lee SH, Lee EJ, Kim TW:Structural characteristics of the acquired optic disc pit and the rate of progressive retinal nerve fiber layer thinning in primary open-angle glaucoma. JAMA Ophthalmol 133:1151-1158, 2015
5)Kim YW, Lee EJ, Kim TW et al:Microstructure of bate-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology 121:1341-1349, 2014
6)Suh MH, Park JW, Kim HR:Association between the deep-layer microvasculature dropout and the visual field damage in glaucoma. J Glaucoma 27:543-551, 2018
7)Quigley HA, Hohman RM, Addicks EM et al:Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 95:673-691, 1983
8)Takayama K, Hangai M, Kimura Y et al:Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 54:4798-4807, 2013
9)Faridi OS, Park SC, Kabadi R et al:Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Ophthalmology 121:1524-1530, 2014
10)Leske MC, Wu SY, Hennis A et al:Risk factors for incident open-angle glaucoma:the Barbados Eye Studies. Ophthalmology 115:85-93, 2008
11)Wang L, Cull GA, Piper C et al:Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Invest Ophthalmol Vis Sci 53:8303-8309, 2012
12)Yarmohammadi A, Zangwill LM, Diniz-Filho A et al:Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124:709-719, 2017
13)楯 日出雄・谷口良輔・舘 奈保子・他:OCT Angiographyを用いた強度近視眼における緑内障判定の有用性.臨眼74:1433-1442,2020
14)Suh MH, Zangwill LM, Manalastas PI et al:Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 123:2509-2518, 2016
15)Akagi T, Zangwill LM, Shoji T et al:Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography. PLoS One 13:e0201729, 2018
16)Kimura Y, Akagi T, Hangai M et al:Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia. PLoS One 9:e115313, 2014
17)Lee EJ, Lee SH, Kim JA et al:Parapapillary deep-layer microvasculature dropout in glaucoma:topographic association with glaucomatous damage. Invest Ophthalmol Vis Sci 58:3004-3010, 2017
18)Witmer MT, Margo CE, Drucker M:Tilted optic disks. Surv Ophthalmol 55:403-428, 2010
19)Han JC, Cho SH, Sohn DY et al:The characteristics of lamina cribrosa defects in myopic eyes with and without open-angle glaucoma. Invest Ophthalmol Vis Sci 57:486-494, 2016
20)Sawada Y, Araie M, Kasuga H et al:Focal lamina cribrosa defect in myopic eyes with nonprogressive glaucomatous visual field defect. Am J Ophthalmol 190:34-49, 2018