文献詳細
特集 ザ・脈絡膜。
文献概要
●強膜は眼球を保護するだけでなく,眼球運動や眼圧変動に対応し,眼球の構造や光学的安定性を維持している。
●中心性漿液性脈絡網膜症の患者は厚い強膜を有しており,厚い強膜の脈絡膜循環障害への影響が示唆されている。
●脈絡膜と強膜の相互作用は,近視や緑内障などの疾患において重要な役割を果たしている可能性がある。
●中心性漿液性脈絡網膜症の患者は厚い強膜を有しており,厚い強膜の脈絡膜循環障害への影響が示唆されている。
●脈絡膜と強膜の相互作用は,近視や緑内障などの疾患において重要な役割を果たしている可能性がある。
参考文献
1)Boote C, Sigal IA, Grytz R, et al:Scleral structure and biomechanics. Prog Retin Eye Res 74:100773, 2020
2)Komai Y, Ushiki T:The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32:2244-2258, 1991
3)Schultz DS, Lotz JC, Lee SM, et al:Structural factors that mediate scleral stiffness. Invest Ophthalmol Vis Sci 49:4232-4236, 2008
4)Imamura Y, Fujiwara T, Margolis R, et al:Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469-1473, 2009
5)Hayashi K, Hasegawa Y, Tokoro T:Indocyanine green angiography of central serous chorioretinopathy. Int Ophthalmol 9:37-41, 1986
6)Piccolino FC, Borgia L:Central serous chorioretinopathy and indocyanine green angiography. Retina 14:231-242, 1994
7)Spaide RF, Campeas L, Haas A, et al:Central serous chorioretinopathy in younger and older adults. Ophthalmology 103:2070-2079;discussion 2079-2080, 1996
8)Pang CE, Shah VP, Sarraf D, et al:Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 158:362-371.e2, 2014
9)Hiroe T, Kishi S:Dilatation of asymmetric vortex vein in central serous chorioretinopathy. Ophthalmol Retina 2:152-161, 2018
10)Venkatesh P, Takkar B, Temkar S:Clinical manifestations of pachychoroid may be secondary to pachysclera and increased scleral rigidity. Med Hypotheses 113:72-73, 2018
11)Schepens CL, Brockhurst RJ:Uveal effusion. 1. clinical picture. Arch Ophthalmol 70:189-201, 1963
12)Elagouz M, Stanescu-Segall D, Jackson TL:Uveal effusion syndrome. Surv Ophthalmol 55:134-145, 2010
13)Brockhurst RJ:Vortex vein decompression for nanophthalmic uveal effusion. Arch Ophthalmol 98:1987-1990, 1980
14)Gass JD, Jallow S:Idiopathic serous detachment of the choroid, ciliary body, and retina(uveal effusion syndrome). Ophthalmology 89:1018-1032, 1982
15)Imanaga N, Terao N, Nakamine S, et al:Scleral thickness in central serous chorioretinopathy. Ophthalmol Retina 5:285-291, 2021
16)Lee YJ, Lee YJ, Lee JY, et al:Author Correction:A pilot study of scleral thickness in central serous chorioretinopathy using anterior segment optical coherence tomography. Sci Rep 11:14298, 2021
17)Fernández-Vigo JI, Moreno-Morillo FJ, Shi H, et al:Assessment of the anterior scleral thickness in central serous chorioretinopathy patients by optical coherence tomography. Jpn J Ophthalmol 65:769-776, 2021
18)Keidel LF, Schworm B, Langer J, et al:Scleral thickness as a risk factor for central serous chorioretinopathy and pachychoroid neovasculopathy. J Clin Med 12:3102, 2023
19)Spaide RF, Fisher YL, Ngo WK, et al:Regional scleral thickness as a risk factor for central serous chorioretinopathy. Retina 42:1231-1237, 2022
20)Spaide RF, Ryan EH Jr:Loculation of fluid in the posterior choroid in eyes with central serous chorioretinopathy. Am J Ophthalmol 160:1211-1216, 2015
21)Imanaga N, Terao N, Sawaguchi S, et al:Clinical factors related to loculation of fluid in central serous chorioretinopathy. Am J Ophthalmol 235:197-203, 2022
22)Terao N, Imanaga N, Wakugawa S, et al:Ciliochoroidal effusion in central serous chorioretinopathy. Retina 42:730-737, 2022
23)Sonoda S, Sakamoto T, Yamashita T, et al:Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123-1131.e1, 2015
24)Sonoda S, Sakamoto T, Kakiuchi N, et al:Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images. Jpn J Ophthalmol 62:179-185, 2018
25)Imanaga N, Terao N, Sonoda S, et al:Relationship between scleral thickness and choroidal structure in central serous chorioretinopathy. Invest Ophthalmol Vis Sci 64:16, 2023
26)Imanaga N, Terao N, Wakugawa S, et al:Scleral thickness in simple versus complex central serous chorioretinopathy. Am J Ophthalmol 261:103-111, 2024
27)Spaide RF, Gemmy Cheung CM, Matsumoto H, et al:Venous overload choroidopathy:a hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res 86:100973, 2022
28)Terao N, Imanaga N, Wakugawa S, et al:Short axial length is related to asymmetric vortex veins in central serous chorioretinopathy. Ophthalmol Sci 1:100071, 2021
29)Sawaguchi S, Terao N, Imanaga N, et al:Scleral thickness in steroid-induced central serous chorioretinopathy. Ophthalmol Sci 2:100124, 2022
30)Scarinci F, Patacchioli FR, Costanzo E, et al:Relationship of choroidal vasculature and choriocapillaris flow with alterations of salivary α-amylase patterns in central serous chorioretinopathy. Invest Ophthalmol Vis Sci 62:19, 2021
31)Terao N, Koizumi H, Kojima K, et al:Short axial length and hyperopic refractive error are risk factors of central serous chorioretinopathy. Br J Ophthalmol 104:1260-1265, 2020
32)Matsumoto H, Hoshino J, Mukai R, et al:Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases. Ophthalmol Retina 4:938-945, 2020
33)Brinks J, van Dijk EHC, Meijer OC, et al:Choroidal arteriovenous anastomoses:a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. Acta Ophthalmol 100:946-959, 2022
34)Matsumoto H, Kishi S, Mukai R, et al:Remodeling of macular vortex veins in pachychoroid neovasculopathy. Sci Rep 9:14689, 2019
35)Saito M, Saito W, Hirooka K, et al:Pulse waveform changes in macular choroidal hemodynamics with regression of acute central serous chorioretinopathy. Invest Ophthalmol Vis Sci 56:6515-6522, 2015
36)Spahn C, Wiek J, Burger T, et al:Psychosomatic aspects in patients with central serous chorioretinopathy. Br J Ophthalmol 87:704-708, 2003
37)Tsai DC, Chen SJ, Huang CC, et al:Risk of central serous chorioretinopathy in adults prescribed oral corticosteroids:a population-based study in Taiwan. Retina 34:1867-1874, 2014
38)Liang ZQ, Huang LZ, Qu JF, et al:Association between endogenous cortisol level and the risk of central serous chorioretinopathy:a Meta-analysis. Int J Ophthalmol 11:296-300, 2018
39)Kaufmann C, Bachmann LM, Robert YC, et al:Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol 124:1104-1108, 2006
40)Jin Y, Wang X, Zhang L, et al:Modeling the origin of the ocular pulse and its impact on the optic nerve head. Invest Ophthalmol Vis Sci 59:3997-4010, 2018
41)Beaton L, Mazzaferri J, Lalonde F, et al:Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging. Biomed Opt Express 6:1694-1706, 2015
42)Sayah DN, Szigiato AA, Mazzaferri J, et al:Correlation of ocular rigidity with intraocular pressure spike after intravitreal injection of bevacizumab in exudative retinal disease. Br J Ophthalmol 105:392-396, 2021
43)Aoki S, Asaoka R, Azuma K, et al:Biomechanical properties measured with dynamic Scheimpflug analyzer in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 262:1795-1803, 2024
44)Liu Y, Wang L, Xu Y, et al:The influence of the choroid on the onset and development of myopia:from perspectives of choroidal thickness and blood flow. Acta Ophthalmol 99:730-738, 2021
45)Esmaeelpour M, Povazay B, Hermann B, et al:Three-dimensional 1060-nm OCT:choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 51:5260-5266, 2010
46)Hayreh SS:Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 20:595-624, 2001
47)Xiong S, He X, Zhang B, et al:Changes in choroidal thickness varied by age and refraction in children and adolescents:a 1-year longitudinal study. Am J Ophthalmol 213:46-56, 2020
48)Nickla DL, Wallman J:The multifunctional choroid. Prog Retin Eye Res 29:144-168, 2010
掲載誌情報