文献詳細
特集 ザ・脈絡膜。
文献概要
●脈絡膜厚は変動しやすく,緑内障病態との関連については一貫したエビデンスがない。
●脈絡膜の菲薄化と傍乳頭網脈絡膜萎縮を伴う眼は,中心視野障害の進行に注意が必要である。
●脈絡膜は自己調節能に乏しく,眼圧上昇は脈絡膜の菲薄化や血流低下につながりうる。
●理想的には脈絡膜血流を測定し,緑内障病態との関連についてより調査を行う必要がある。
●脈絡膜の菲薄化と傍乳頭網脈絡膜萎縮を伴う眼は,中心視野障害の進行に注意が必要である。
●脈絡膜は自己調節能に乏しく,眼圧上昇は脈絡膜の菲薄化や血流低下につながりうる。
●理想的には脈絡膜血流を測定し,緑内障病態との関連についてより調査を行う必要がある。
参考文献
1)Ruiz-Medrano J, Flores-Moreno I, Peña-García P, et al:Macular choroidal thickness profile in a healthy population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 55:3532-3542
2)Spaide RF, Koizumi H, Pozonni MC:Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496-500, 2008
3)Komma S, Chhablani J, Ali MH, et al:Comparison of peripapillary and subfoveal choroidal thickness in normal versus primary open-angle glaucoma(POAG)subjects using spectral domain optical coherence tomography(SD-OCT)and swept source optical coherence tomography(SS-OCT). BMJ Open Ophthalmol 4:e000258, 2019
4)Wang W, Zhang X:Choroidal thickness and primary open-angle glaucoma:a cross-sectional study and meta-analysis. Investig Ophthalmol Vis Sci 55:6007-6014, 2014
5)Zhang Z, Yu M, Wang F, et al:Choroidal thickness and open-angle glaucoma:a meta-analysis and systematic review. J Glaucoma 25:e446-e454, 2016
6)Maul EA, Friedman DS, Chang DS, et al:Choroidal thickness measured by spectral domain optical coherence tomography:factors affecting thickness in glaucoma patients. Ophthalmology 118:1571-1579, 2011
7)Karaca U, Ozge G, Mumcuoglu T, et al:No relationship between visual field damage and choroidal thickness in eyes with primary open-angle glaucoma. Ophthalmic Res 63:491-496, 2020
8)Suh MH, Zangwill LM, Manalastas PIC, et al:Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 123:2509-2518, 2016
9)Kiyota N, Kunikata H, Takahashi S, et al:Factors associated with deep circulation in the peripapillary chorioretinal atrophy zone in normal-tension glaucoma with myopic disc. Acta Ophthalmol 96:e290-e297, 2018
10)Lee EJ, Song JE, Hwang HS, et al:Choroidal microvasculature dropout in the absence of parapapillary atrophy in POAG. Invest Ophthalmol Vis Sci 64:21, 2023
11)Saeedi O, Pillar A, Jefferys J, et al:Change in choroidal thickness and axial length with change in intraocular pressure after trabeculectomy. Br J Ophthalmol 98:976-979, 2014
12)Kara N, Baz O, Altan C, et al:Changes in choroidal thickness, axial length, and ocular perfusion pressure accompanying successful glaucoma filtration surgery. Eye(Lond) 27:940-945, 2013
13)Usui S, Ikuno Y, Uematsu S, et al:Changes in axial length and choroidal thickness after intraocular pressure reduction resulting from trabeculectomy. Clin Ophthalmol 7:1155-1161, 2013
14)Zhang X, Cole E, Pillar A, et al:The effect of change in intraocular pressure on choroidal structure in glaucomatous eyes. Invest Ophthalmol Vis Sci 58:3278-3285, 2017
and of isoproterenol. Eye(Lond) 14:46-52, 2000
16)Miura M, Makita S, Iwasaki T, et al:An approach to measure blood flow in single choroidal vessel using doppler optical coherence tomography. Invest Ophthalmol Vis Sci 53:7137-7141, 2012
17)Isono H, Kishi S, Kimura Y, et al:Observation of choroidal circulation using index of erythrocytic velocity. Arch Ophthalmol 121:225-231, 2003
18)Hayreh SS:Optic disc changes in glaucoma. Br J Ophthalmol 56:175-185, 1972
19)Hayreh SS, Revie IH, Edwards J:Vasogenic origin of visual field defects and optic nerve changes in glaucoma. Br J Ophthalmol 54:461-472, 1970
20)Hayreh SS:The pathogenesis of optic nerve lesions in glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:197-213, 1976
21)Laatikainen L:Fluorescein angiographic studies of the peripapillary and perilimbal regions in simple, capsular and low-tension glaucoma. Acta Ophthalmol Suppl 111:3-83, 1971
22)Kiyota N, Shiga Y, Omodaka K, et al:The relationship between choroidal blood flow and glaucoma progression in a Japanese study population. Jpn J Ophthalmol 66:425-433, 2022
23)Alm A, Bill A:The oxygen supply to the retina. Ⅱ. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 84:306-319, 1972
24)Weiter JJ, Schachar RA, Ernest JT:Control of intraocular blood flow. Ⅰ. Intraocular pressure. Invest Ophthalmol 12:327-331, 1973
25)Riva CE, Titze P, Hero M, et al:Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752-1760, 1997
26)Kiel JW:Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 69:413-429, 1999
27)Kiyota N, Shiga Y, Ichinohasama K, et al:The impact of intraocular pressure elevation on optic nerve head and choroidal blood flow. Invest Ophthalmol Vis Sci 59:3488-3496, 2018
掲載誌情報