文献詳細
文献概要
今月の話題
眼科イメージング領域のAI研究最前線
著者: 船津諒1
所属機関: 1鹿児島大学医学部眼科学教室
ページ範囲:P.544 - P.550
文献購入ページに移動 Artificial Intelligence(AI)の活用は多くの分野で急速に拡大しており,自動運転,生成系AIなど生活の一部になりつつある。しかし医療の現場で,AIを用いた技術が広く普及しているとはいいがたい。本稿では,医療分野においてAIの普及を妨げる背景と,AIと医療者が協力することで診療の質を上げる「wayfinding AI」の可能性について述べる。
参考文献
1)Miyake M, Akiyama M, Kashiwagi K et al:Japan Ocular Imaging Registry:a national ophthalmology real-world database. Jpn J Ophthalmol 66:499-503, 2022
Registry:Purpose and perspectives. Ophthalmologe 114(Suppl 1):1-6, 2017
3)Natarajan S, Jain A, Krishnan R et al:Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone. JAMA Ophthalmol 137:1182-1188, 2019
4)Gulshan V, Peng L Coram M et al:Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402-2410, 2016
5)van der Heijden AA, Abramoff MD, Verbraak F et al:Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System. Acta Ophthalmol 96:63-68, 2018
6)Resnikoff S, Lansingh VC, Washburn L et al:Estimated number of ophthalmologists worldwide(International Council of Ophthalmology update):will we meet the needs? Br J Ophthalmol 104:588-592, 2020
7)Zhou Y, Chia MA, Wagner SK et al:A foundation model for generalizable disease detection from retinal images. Nature 622:156-163, 2023
8)Shiihara H, Sonoda S, Terasaki H et al:Wayfinding artificial intelligence to detect clinically meaningful spots of retinal diseases:Artificial intelligence to help retina specialists in real world practice. PLoS One 18:e0283214, 2023
9)Ting DSW, Pasquale LR, Peng L et al:Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 103:167-175, 2019
10)Schmidt-Erfurth U, Sadeghipour A, Gerendas BS et al:Artificial intelligence in retina. Prog Retin Eye Res 67:1-29, 2018
11)Gargeya R, Leng T:Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124:962-969, 2017
12)Kermany DS, Goldbaum M, Cai W et al:Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172:1122-1131, 2018
13)Adler-Milstein J, Chen JH, Dhaliwal G:Next-generation artificial intelligence for diagnosis:from predicting diagnostic labels to “Wayfinding”. JAMA 326:2467-2468, 2021
14)Hussain S, Guo F, Li W et al:DilUnet:A U-net based architecture for blood vessels segmentation. Comput Methods Programs Biomed 218:106732, 2022
15)He Y, Carass A, Liu Y et al:Fully convolutional boundary regression for retina OCT segmentation. Med Image Comput Comput Assist Interv 11764:120-128, 2019
16)Ronneberger O, Fischer P, Brox T:U-Net:Convolutional Networks for Biomedical Image Segmentation. Cham:Springer International Publishing, 2015
17)Bourne RRA, Jonas JB, Bron AM et al:Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015:magnitude, temporal trends and projections. Br J Ophthalmol 102:575-585, 2018
18)Nadri G, Saxena S, Stefanickova J et al:Disorganization of retinal inner layers correlates with ellipsoid zone disruption and retinal nerve fiber layer thinning in diabetic retinopathy. J Diabetes Complications 33:550-553, 2019
19)Das R, Spence G, Hogg RE et al:Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol 136:202-208, 2018
20)Sun JK, Lin MM, Lammer J et al:Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 132:1309-1316, 2014
21)Wu L, Fernandez-Loaiza P, Sauma J et al:Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 4:290-294, 2013
22)Classification of diabetic retinopathy from fluorescein angiograms. ETDRS report number 11. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98(5 Suppl):807-822, 1991
23)Regulatory considerations on artificial intelligence for health. World Health Organization, Geneva, 2023
掲載誌情報