文献詳細
綜説
文献概要
要旨
尿路結石の手術治療は,内視鏡手術の発達によりstone freeが可能となってきた.しかし,再発が多い尿路結石治療の目標は,その成因の検索による再発予防である.尿路結石の形成機序では細胞傷害からRandall'sプラークが形成され,シュウ酸カルシウム結石に成長することが明らかになってきた.尿路結石は遺伝因子に加えて食生活を中心とした環境因子が重なる生活習慣病である.尿路結石の疼痛発作は,将来にわたる健康人生への分岐点であることを啓発いただきたい.
尿路結石の手術治療は,内視鏡手術の発達によりstone freeが可能となってきた.しかし,再発が多い尿路結石治療の目標は,その成因の検索による再発予防である.尿路結石の形成機序では細胞傷害からRandall'sプラークが形成され,シュウ酸カルシウム結石に成長することが明らかになってきた.尿路結石は遺伝因子に加えて食生活を中心とした環境因子が重なる生活習慣病である.尿路結石の疼痛発作は,将来にわたる健康人生への分岐点であることを啓発いただきたい.
参考文献
1) Yasui T, Iguchi M, Suzuki S, et al : Prevalence and epidemiological characteristics of urolithiasis in Japan : national trends between 1965 and 2005. Urology 71 : 209─213, 2008
2) 奴田原紀久雄 : 特集 : 尿路結石に対する外科的治療─Stone free 100%を目指して. 臨泌71 : 649─718, 2017
3) 柑本康夫 : 尿路結石症. 泌尿器科処方のすべて─すぐに使える実践ガイド. 臨泌70 : 84─93, 2016
4) 宮澤克人, 坂本信一, 安井孝周, 他 : 尿路結石症の疫学. 日尿路結石症会誌16 : 24─25, 2017
5) Yasui T, Okada A, Hamamoto S, et al : The association between the incidence of urolithiasis and nutrition based on Japanese National Health and Nutrition Surveys. Urolithiasis 41 : 217─224, 2013
6) 井口正典, 安井孝周, 郡健二郎 : 尿路結石の疫学. 尿路結石症のすべて. pp8─11, 医学書院, 東京, 2008
7) Taylor EN, Stampfer MJ, CUrhan GC : Obesity, weight gain, and the risk of kidney stones. JAMA 293 : 455─462, 2005
8) West B, Luke A, Durazo-Arvizu RA, et al : Metabolic syndrome and self-reported history of kidney stones : the National Health and Nutrition Examination Survey (NHANES III) 1988-1994. Am J Kidney Dis 51 : 741─747, 2008
9) Rendina D, Mossetti G, De Filippo G, et al : Association between metabolic syndrome and nephrolithiasis in an inpatient population in southern Italy : role of gender, hypertension and abdominal obesity. Nephrol Dial Transplant 24 : 900─906, 2009
10) Kim YJ, Kim CH, Sung EJ, et al : Association of nephrolithiasis with metabolic syndrome and its components. Metabolism 62 : 808─813, 2013
11) Kohjimoto Y, Sasaki Y, Iguchi M, et al : Association of metabolic syndrome traits and severity of kidney stones : results from a nationwide survey on urolithiasis in Japan. Am J Kidney Dis 61 : 923─929, 2013
12) Yasui T, Fujita K, Tozawa K, et al : Calcium oxalate crystal attachment to cultured rat kidney epithelial cell, NRK-52E. Urol Int 67 : 73─76, 2001
13) Khan SR, Pearle MS, Robertson WG, et al : Kidney stones. Nat Rev Dis Primers 25 : 16008, 2016
14) Taguchi K, Hamamoto S, Okada A, et al : Genome-Wide Gene Expression Profiling of Randall's Plaques in Calcium Oxalate Stone Formers. J Am Soc Nephrol 28 : 333─347, 2017
15) Kohri K, Nomura S, Kitamura Y, et al : Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268 : 15180─15184, 1993
16) Yasui T, Fujita K, Sasaki S, et al : Expression of bone matrix proteins in urolithiasis model rats. Urol Res 27 : 255─261, 1999
17) Okada A, Nomura S, Saeki Y, et al : Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23 : 1629─1637, 2008
18) Hamamoto S, Nomura S, Yasui T, et al : Effects of impaired functional domains of osteopontin on renal crystal formation : Analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25 : 2712─2723, 2010
19) Hamamoto S, Yasui T, Okada A, et al : Crucial role of the cryptic epitope SLAYGLR within osteopontin in renal crystal formation of mice. J Bone Miner Res 26 : 2967─2977, 2011
20) Hirose M, Tozawa K, Yasui T, et al : Glyoxylate induces renal tubular cell injury and microstructural changes in experimental mouse. Urol Res 36 : 139─147, 2008
21) Khan SR : Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation : evidence from clinical and experimental investigations. J Urol 189 : 803─811, 2013
22) Hirose M, Yasui T, Okada A, et al : Renal tubular epithelial cell injury and oxidative stress induce calcium oxalate crystal formation in mouse kidney. Int J Urol 17 : 83─92, 2010
23) Niimi K, Yasui T, Hirose M, et al : Mitochondrial permeability transition pore opening induces the initial process of renal calcium crystallization. Free Radic Biol Med 52 : 1207─1217, 2012
24) Okada A, Yasui T, Hamamoto S, et al : Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse : detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24 : 908─924, 2009
25) Okada A, Yasui T, Fujii Y, et al : Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice : Detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res 25 : 2701─2711, 2010
26) Taguchi K, Okada A, Kitamura H, et al : Colony-stimulating factor-1 signaling suppresses renal crystal formation. J Am Soc Nephrol 25 : 1680─1697, 2014
27) Taguchi K, Okada A, Hamamoto S, et al : M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep 6 : 35167, 2016
28) Yasui T, Okada A, Hamamoto S, et al : Pathophysiology-based treatment of urolithiasis. Int J Urol 24 : 32─38, 2017
29) Ando R, Suzuki S, Yasui T, et al : Impact of insulin resistance, insulin and adiponectin on kidney stones in the Japanese population. Int J Urol 18 : 131─138, 2011
30) Iba A, Kohjimoto Y, Mori T, et al : Insulin resistance increases the risk of urinary stone formation in a rat model of metabolic syndrome. BJU Int 106 : 1550─1554, 2010
31) Fujii Y, Okada A, Yasui T, et al : Effect of adiponectin on kidney crystal formation in metabolic syndrome model mice via inhibition of inflammation and apoptosis. PLoS One 8 : e61343, 2013
32) Zuo L, Tozawa K, Okada A, et al : A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment. J Urol 191 : 1906─1912, 2014
33) Yamauchi T, Kamon J, Waki H, et al : The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med 7 : 941─946, 2001
34) Sasaki Y, Kohjimoto Y, Iba A, et al : Weight loss intervention reduces the risk of kidney stone formation in a rat model of metabolic syndrome. Int J Urol 22 : 404─409, 2015
35) Taguchi K, Okada A, Yasui T, et al : Pioglitazone, a peroxisome proliferator activated receptor γ agonist, decreases renal crystal deposition, oxidative stress and inflammation in hyperoxaluric rats. J Urol 188 : 1002─1011, 2012
36) Taguchi K, Okada A, Hamamoto S, et al : Differential Roles of Peroxisome Proliferator-Activated Receptor-α and Receptor-γ on Renal Crystal Formation in Hyperoxaluric Rodents. PPAR Res 2016 : 9605890, 2016
37) Gao B, Yasui T, Itoh Y, et al : Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int 72 : 592─598, 2007
38) Thorleifsson G, Holm H, Edvardsson V, et al : Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41 : 926─930, 2009
39) Yasui T, Okada A, Urabe Y, et al : A replication study for three nephrolithiasis loci at 5q35.3, 7p14.3 and 13q14.1 in the Japanese population. J Hum Genet 58 : 588─593, 2013
掲載誌情報