icon fsr

文献詳細

雑誌文献

臨床婦人科産科77巻12号

2023年12月発行

今月の臨床 AIがもたらす産婦人科医療の変革

産科

AIによる胎児表情の識別

著者: 宮木康成12 秦利之3 三宅貴仁13

所属機関: 1三宅おおふくクリニック婦人科 2 3三宅医院産婦人科

ページ範囲:P.1197 - P.1205

文献概要

●胎児表情を高い精度で識別するAIを作成できた.このAIを用いたカオス的次元の計測によって,胎児脳活動状態を初めて定量的に示すことができた.

●胎児脳活動状態はカオス的次元の値から少なくとも2種類の状態(dense,sparse)が存在し(p<0.05),両者が変動することを発見した.これは,少なくとも妊娠27週以降の胎児には意識があることを示唆している.

●胎児脳活動のカオス的次元の変動は自由エネルギー原理で解釈が可能で,胎児脳の発達評価やwell-being評価の新しい手法として期待できる.

参考文献

1)Hata T, et al : Ultrasound for evaluation of fetal neurobehavioural development : from 2-D to 4-D ultrasound. Infant Child Dev 19 : 99-118, 2010
2)Hata T, et al : HDIive and 4D ultrasound in the assessment of fetal facial expressions. Donald School J Ultrasound Obstet Gynecol 9 : 44-50, 2015
3)Hata T : Current status of fetal neurodevelopmental assessment : 4D ultrasound study. J Obstet Gynaecol Res 42 : 1211-1221, 2016
4)Nijhuis JG : Fetal behavior. Neurobiol Aging 24(Suppl) : S41-S46, 2003
5)Prechtl HF : State of the art of a new functional assessment of the young nervous system : an early predictor of cerebral palsy. Early Hum Dev 50 : 1-11, 1997
6)de Vries JI, et al : The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 7 : 301-322, 1982
7)de Vries JI, et al : The emergence of fetal behaviour. II. Quantitative aspects. Early Hum Dev 12 : 99-120, 1985
8)Prechtl HF : Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev 23 : 151-158, 1990
9)Prechtl HF, et al : Is neurological assessment of the fetus possible? Eur J Obstet Gynecol Reprod Biol 75 : 81-84, 1997
10)Kuno A, et al : Three-dimensional sonographic assessment of fetal behavior in the early second trimester of pregnancy. J Ultrasound Med 20 : 1271-1275, 2001
11)AboEllail MAM, et al : Fetal face as important indicator of fetal brain function. J Perinat Med 45 : 729-736, 2017
12)Bodfish J, et al : Blink rate as an index of dopamine function in adults with mental retardation and repetitive movement disorders. Am J Ment Retard 99 : 335-344, 1995
13)Kleven MS, et al : Diffetential effects of direct and indirect dopamine agonists on eye blink rate in cynomolgus monkeys. J Pharmacol Exp Ther 279 : 1211-1219, 1996
14)Dreisbach G, et al : Dopamine and cognitive control : the influence of spontaneous eyeblink rate and dopamine gene polymorphism on perseveration and distractibility. Behav Neurosci 11 : 483-490, 2005
15)Colzato LS, et al : Dopamine and inhibitory action control : evidence from spontaneous eye blink rates. Exp Brain Res 196 : 467-474, 2009
16)Horimoto N, et al : Concurrence of mouthing movement and rapid eye movement/non-rapid eye movement phases with advance in gestation of the human fetus. Am J Obstet Gynecol 161 : 344-351, 1989
17)Hata T, et al : Fetal consciousness 4D ultrasound study. Donald School J Ultrasound Obstet Gynecol 9 : 471-474, 2015
18)Reissland N, et al : Can healthy fetuses show facial expressions of “pain” or “distress”? PLoS One 8 : e65530, 2013
19)Kawakami F, et al : Smiles in the fetal period. Infant Behav Dev 35 : 466-471, 2019
20)Miyagi Y, et al : Potential of artificial intelligence for estimating Japanese fetal weights. Acta Medica Okayama 74 : 483-493, 2020
21)Miyagi Y, et al : Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types. Oncol Lett 19 : 1602-1610, 2020
22)Miyagi Y, et al : Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images. Mol Clin Oncol 11 : 583-589, 2019
23)Miyagi Y, et al : Feasibility of new method for the prediction of clinical trial results using compressive sensing of artificial intelligence. BJHR 10 : 237-267, 2023
24)Miyagi Y, et al : Studies on development of new method for the prediction of clinical trial results using compressive sensing of artificial intelligence. Ferreira MAM(ed) : Theory and practice of mathematics and computer science, vol 2, pp101-108, Book Publisher International, Hooghly, West Bengal, India, 2020
25)Miyagi Y, et al : Development of new method for the prediction of clinical trial results using compressive sensing of artificial intelligence. J Biostat Biometric 3 : 202, 2018
26)Miyagi Y, et al : Predicting a live birth by artificial intelligence incorporating both the blastocyst image and conventional embryo evaluation parameters. Artif Intell Med Imaging 1 : 94-107, 2020
27)Miyagi Y, et al : Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod Med Biol 18 : 190-203, 2019
28)Miyagi Y, et al : Feasibility of predicting live birth by combining conventional embryo evaluation with artificial intelligence applied to a blastocyst image in patients classified by age. Reprod Med Biol 18 : 344-356, 2019
29)Miyagi Y, et al : New methods for comparing embryo selection methods by applying artificial intelligence : comparing embryo selection AI for live births. BJHR 9 : 36-44, 2022
30)Miyagi Y, et al : Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reprod Med Biol 18 : 204-211, 2019
31)Miyagi Y, et al : Deep learning to predicting live births and aneuploid miscarriages from images of blastocysts combined with maternal age. Int J Bioinfor Intell Comput 1 : 10-21, 2022
32)Miyagi Y, et al : New method for determining fibrinogen and FDP threshold criteria by artificial intelligence in cases of massive hemorrhage during delivery. J Obstet Gynaecol Res 46 : 256-265, 2020
33)Tada K, et al : Feasibility of applying novel FDP threshold criteria to DIC diagnostic scoring systems in Japanese women with placental abruption. Eur J Clin Biomed Sci 8 : 27-32, 2022
34)Bengio Y, et al : Representation learning : a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35 : 1798-1828, 2013
35)LeCun YA, et al : Efficient backprop. Montavon G, et al(eds) : Neural networks : tricks of the trade, 2nd ed. pp9-48, Springer, Heidelberg, Berlin, 2012
36)LeCun Y, et al : Gradient-based learning applied to document recognition. Proc IEEE 86 : 2278-2324, 1998
37)LeCun Y, et al : Backpropagation applied to handwritten zip code recognition. Neural Comput 1 : 541-551, 1989
38)Serre T, et al : Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29 : 411-426, 2007
39)Wiatowski T, et al : A mathematical theory of deep convolutional neural networks for feature extraction. IEEE Trans Inf Theory 64 : 1845-1866, 2017
40)Yu L, et al : Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36 : 994-1004, 2017
41)Caruana R, et al : Overfitting in neural nets : backpropagation, conjugate gradient, and early stopping. Leen TK et al(eds) : Advances in Neural Information Processing Systems 13 : Proceedings of the 2000 Conference. pp402-408, MIT Press, Cambridge, 2001
42)Baum EB, et al : What size net gives valid generalization? Neural Comput 1 : 151-160, 1989
43)Geman S, et al : Neural networks and the bias/variance dilemma. Neural Comput 4 : 1-58, 1992
44)Krogh A, et al : A simple weight decay can improve generalization. Adv Neural Inform Proc Syst 4 : 950-957, 1992
45)Moody JE : The effective number of parameters : an analysis of generalization and regularization in nonlinear learning systems. Adv Neural Infor Proc Syst 4 : 847-854, 1992
46)Krizhevsky A, et al : ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems. NIPS 2012 25 : 1097-1105, 2012
47)Bridle JS : Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Soulié FF, et al(eds) : Neurocomputing : algorithms, architectures and applications. pp227-236, Springer, Berlin, Heidelberg, 1990
48)Miyagi Y, et al : Recognition of facial expression of fetuses by artificial intelligence(AI). J Perinat Med 49 : 596-603, 2021
49)Miyagi Y, et al : Recognition of fetal facial expressions using artificial intelligence deep learning. Donald School J Ultrasound Obstet Gynecol 15 : 223-228, 2021
50)Miyagi Y, et al : Variations of multifractal structure in the fetal heartbeats. Acta Med Okayama 57 : 49-52, 2003
51)Grassberger P, et al : Characterization of strange attractors. Phys Rev Lett 50 : 346-349, 1983
52)Grassberger P : Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D 13 : 34-54, 1984
53)Farmer JD, et al : The dimension of chaotic attractors. Physica D 7 : 153-180, 1983
54)HalseyTC, et al : Fractal measures and their singularities : the characterization of strangesets. Phys Rev A 33 : 1141-1151, 1986
55)Hentschel HE, et al : The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8 : 435-444, 1983
56)Miyagi Y, et al : Artificial intelligence to understand fluctuation of fetal brain activity by recognizing facial expressions. Int J Gynecol Obstet 161 : 877-885, 2023
57)Isomura T, et al : Canonical neural networks perform active inference. Commun Biol 5 : 55, 2022
58)Friston KJ, et al : A free energy principle for the brain. J Physiol Paris 100 : 70-87, 2006
59)Friston KJ : The free-energy principle : a rough guide to the brain? Trends Cogn Sci 13 : 293-301, 2009
60)Friston KJ, et al : Action and behavior : a free-energy formulation. Biol Cybern 102 : 227-260, 2010
61)Friston KJ, et al : Reinforcement learning or active inference? PloS One 4 : e6421, 2009
62)Miyagi Y, et al : Fetal brain activity and the free energy principle. J Perinat Med 51 : 925-931, 2023
63)Joyce JM : Kullback-Leibler divergence. Lovric M (ed) : International encyclopedia of statistical science. pp720-722, Springer, Berlin, Heidelberg, 2011
64)Inui T : The free-energy principle : a unified theory of brain functions. The Brain&Neural Networks 25 : 123-134, 2018
65)Yoshida M, et al : Free energy principle and visual consciousness. The Brain&Neural Networks 25 : 53-70, 2018
66)Manning FA, et al : Antepartum fetal evaluation : development of a fetal biophysical profile. Am J Obstet Gynecol 136 : 787-795, 1980

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1294

印刷版ISSN:0386-9865

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら