1)Miyagi Y, et al : Application of deep learning to the classification of uterine cervical squamous epithelial lesion from colposcopy images combined with HPV types. Oncol Lett 19 : 1602-1610, 2020
2)Tanaka Y, et al : Histologic correlation between smartphone and coloposcopic findings in patients with abnormal cervical cytology : experiences in a tertiary referral hospital. Am J Obstet Gynecol 221 : 241.e1-241.e6, 2019
3)Ito Y, et al : An artificial intelligence-assisted diagnostic system improves the accuracy of image diagnosis of uterine cervical lesions. Mol Clin Oncol 16 : 27, 2022
4)Kim S, et al : Role of artificial intelligence interpretation of colposcopic images in cervical cancer screening. Healthcare(Basel) 3 : 468, 2022
5)Takahashi T, et al : Development of a prognostic prediction support system for cervical intraepithelial neoplasia using artificial intelligence-based diagnosis. J Gynecol Oncol 33 : e57, 2022
6)植田彰彦:がん診療におけるメディカルAI開発について : コルポスコピーのAI診断技術開発.第74回日本産科婦人科学会学術講演会生涯研修プログラム12.2022年8月6日
7)京都大学大学院医学研究科・医学部:コルポスコピー検査の支援に向けたAIソフトウェアを開発 ―子宮頸がんの早期発見や死亡率の低減に貢献.2023年4月7日.https://www.med.kyoto-u.ac.jp/news/8828
8)WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, 2nd ed. 6 July, 2021 https://www.who.int/publications/i/item/9789240030824