1)Anderson AS, et al : European code against cancer 4th edition : obesity, body fatness and cancer. Cancer Epidemiol 39(suppl 1) : S34-S45, 2015
2)Taylan E, et al : Fertility preservation in gynecologic cancers. Gynecol Oncol 155 : 522-529, 2019
3)Lachance JA, et al : Surgical management and postoperative treatment of endometrial carcinoma. Rev Obstet Gynecol 1 : 97-105, 2008
4)Yanoh K, et al : New diagnostic reporting format for endometrial cytology based on cytoarchitectural criteria. Cytopathology 20 : 388-394, 2009
5)Yanaki F, et al : Liquid-based endometrial cytology using SurePathTM is not inferior to suction endometrial tissue biopsy in clinical performance for detecting endometrial cancer including atypical endometrial hyperplasia. Acta Cytol 61 : 133-139, 2017
6)Fujiwara H,et al : Evaluation of endometrial cytology : cytohistological correlations in 1,441 cancer patients. Oncology 88 : 86-94, 2015
7)日本産科婦人科学会,他(編・監修) : 産婦人科診療ガイドライン―婦人科外来編2020.日本産科婦人科学会,2020
8)Sone K, et al : Usefulness of biopsy by office hysteroscopy for endometrial cancer : a case report. Mol Clin Oncol 13 : 141-145, 2020
9)Soucie JE, et al : The risk of diagnostic hysteroscopy in women with endometrial cancer. Am J Obstet Gynecol 207 : 71.e1-71.e5, 2012
10)Cicinelli E, et al : Risk of long-term pelvic recurrences after fluid minihysteroscopy in women with endometrial carcinoma : a controlled randomized study. Menopause 17 : 511-515, 2010
11)Takahashi Y, et al : Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy. PLoS One 16 : e0248526, 2021
12)Yamada M, et al : Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep 9 : 14465, 2019
13)Zhang Y, et al : Deep learning model for classifying endometrial lesions. J Transl Med 19 : 10, 2021