文献詳細
文献概要
特集 ナノテクノロジーとバイオセンサ 各論 Ⅰ. ナノ粒子関連
10. 分子集合体の細胞内デリバリー
著者: 二木史朗1
所属機関: 1京都大学化学研究所生体機能設計化学研究領域
ページ範囲:P.1439 - P.1446
文献購入ページに移動はじめに
近年,様々なタイプの機能性分子集合体やナノ粒子が開発され,臨床検査や医療,薬物送達などへの応用が試みられてきている.また,これらを細胞内に効率的に導入することができれば,新しいタイプの細胞機能の制御法,細胞内情報の可視化や計測法,あるいは遺伝子や薬物治療法の開発に結びつく可能性がある.一方では,細胞は脂質二重膜よりなる細胞膜によって,外界と遮蔽されており,このような分子集合体やナノ粒子を細胞内に導入するためには,外界とのバリアである細胞膜をなんらかの手段で通過しなくてはいけない.本稿では主として薬物送達を例に,分子集合体の細胞内デリバリーの現状と問題点について概説する.
近年,様々なタイプの機能性分子集合体やナノ粒子が開発され,臨床検査や医療,薬物送達などへの応用が試みられてきている.また,これらを細胞内に効率的に導入することができれば,新しいタイプの細胞機能の制御法,細胞内情報の可視化や計測法,あるいは遺伝子や薬物治療法の開発に結びつく可能性がある.一方では,細胞は脂質二重膜よりなる細胞膜によって,外界と遮蔽されており,このような分子集合体やナノ粒子を細胞内に導入するためには,外界とのバリアである細胞膜をなんらかの手段で通過しなくてはいけない.本稿では主として薬物送達を例に,分子集合体の細胞内デリバリーの現状と問題点について概説する.
参考文献
1) 田畑泰彦:ドラッグデリバリーシステムDDS技術の新たな展開とその活用法 生物医学研究・先進医療のための最先端テクノロジー,メディカルドゥ,2003
2) Torchillin VP, Weissig V:Liposomes, Oxford University Press, Oxford, 2003
3) Otsuka H, Nagasaki Y, Kataoka K:PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403-149, 2003
4) Dufes C, Uchegbu IF, Schatzlein AG:Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177-2202, 2005
5) Ghosh SS, Gopinath P, Ramesh A:Adenoviral vectors:a promising tool for gene therapy. Appl Biochem Biotechnol 133:9-29, 2006
6) Alberts B, Johnson A, Lewis J, et al:細胞の分子生物学, 4版,pp711-766,ニュートンプレス,2004
7) Tachibana R, Harashima H, Shono M, et al:Biochem Biophys Res Commun 251:538-544, 1998
8) Kakudo T, Chaki S, Futaki S, et al:Transferrin-modified liposomes equlpped with a pH-sensitive fusogenic peptide:an artificial viral-like delibery system. Biochemistry 43:5618-5628, 2004
9) 二木史朗:膜透過ペプチドを用いた蛋白質細胞内移送.化学と生物 43:649,2005)
10) Wadia JS, Dowdy SF:Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 57:579-596, 2004
11) Futaki S:Oligoarginine vectors for intracellular delivery:design and cellular-uptake mechanisms. Biopolymers 84:241-249, 2006
12) Joliot A, Prochiantz A:Transduction peptides:from technology to physiology. Nat Cell Biol 6:189-196, 2004
13) Jarver P, Langel U:The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 9:395-402, 2004
14) Jo D, Nashabi A, Doxsee C, et al:Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 19:929-933, 2001
15) Gupta B, Levchenko TS, Torchilin VP:Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57:637-651, 2005
16) Khalil IA, Kogure K, Futaki S, et al:High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J Biol Chem 281:3544-3551, 2006
17) Kleemann E, Neu M, Jekel N, et al:Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release 109:299-316, 2005
18) Eguchi A, Akuta T, Okuyama H, et al:Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 276:26204-26210, 2001
19) de la Fuente JM, Berry CC:Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 16:1176-1180, 2005
20) Wilson SR, MacMahon S, Tat FT, et al:Synthesis and photophysics of a linear non-covalently linked porphyrin-fullerene dyad. Chem Commun 226-227, 2003
21) Santra S, Yang H, Stanley JT, et al:Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun:3144-3146, 2005
22) Wunderbaldinger P, Josephson L, Weissleder R:Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 13:264-268, 2002
23) Torchilin VP, Levchenko TS:TAT-liposomes:a novel intracellular drug carrier. Curr Protein Pept Sci 4:133-140, 2003
24) Kogure K, Moriguchi R, Sasaki K, et al:Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 98:317-323, 2004
25) Suzuki T, Futaki S, Niwa M, et al:Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem 277:2437-2443, 2002
26) Fittipaldi A, Giacca M:Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 57:597-608, 2005
27) Vives E, Brodin P, Lebleu B:A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010-16017, 1997
28) Richard JP, Melikov K, Vives E, et al:Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585-590, 2003
29) Wadia JS, Stan RV, Dowdy SF:Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310-315, 2004
30) Nakase I, Niwa M, Takeuchi T, et al:Cellular uptake of arginine-rich peptides:roles for macropinocytosis and actin rearrangement. Mol Ther 10:1011-1022, 2004
31) Conner SD, Schmid SL:Regulated portals of entry into the cell. Nature 422:37-44, 2003
32) Rothbard JB, Jessop TC, Lewis RS, et al:Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J Am Chem Soc 126:9506-9507, 2004
33) Sakai N, Takeuchi T, Futaki S, et al:Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. Chembiochem 6:114-122, 2005
34) Drews J:Drug discovery:a historical perspective. Science 287:1960-1964, 2000
掲載誌情報