文献詳細
文献概要
シリーズ最新医学講座・Ⅰ 法医学の遺伝子検査・3
ミニサテライトの解析法―DNAフィンガープリントからMVR-PCRまで
著者: 玉木敬二1
所属機関: 1京都大学大学院医学研究科法医学講座
ページ範囲:P.317 - P.326
文献購入ページに移動はじめに
1984年,DNAフィンガープリント(DNA指紋)法が考案されて以来,ヒトゲノム中に存在するミニサテライト(VNTR)領域を分析する検査法が次々と開発され,法医鑑識領域,とりわけ物体検査と親子鑑定の分野においては,大きなパラダイムシフトが起こった.本稿では,これらのミニサテライトの解析法について,その検査法の原理や特徴,法医鑑識領域への応用,そして変遷について紹介する.
ヒトの体は約60兆個の細胞から構成されており,赤血球など一部の細胞を除くほとんどの細胞に核があり,そのなかに染色体を含む.この本体が生命の設計図といえるDNAであるが,ヒトの場合,その“設計図”には30億個もの塩基が並んでいる.このなかには遺伝子以外の領域が多くを占めるが,ある特定の長さの塩基配列が縦列に繰り返して並ぶものがあり,これを縦列反復配列といいヒトゲノムの約3%を占める1).このうち,繰り返し単位(リピート)が6~100塩基(bp)程度で数個から数百個並び,全体の長さが0.5~30kbpになるDNAがある.Jeffreysらはこれをセントロメアにある長大な縦列反復配列であるα-サテライトDNAと対比して,ミニサテライトと名付けた2).また,中村らはミニサテライトのうち多型性に富むものをVNTR(variable number of tandem repeat)と呼称している3).
1984年,DNAフィンガープリント(DNA指紋)法が考案されて以来,ヒトゲノム中に存在するミニサテライト(VNTR)領域を分析する検査法が次々と開発され,法医鑑識領域,とりわけ物体検査と親子鑑定の分野においては,大きなパラダイムシフトが起こった.本稿では,これらのミニサテライトの解析法について,その検査法の原理や特徴,法医鑑識領域への応用,そして変遷について紹介する.
ヒトの体は約60兆個の細胞から構成されており,赤血球など一部の細胞を除くほとんどの細胞に核があり,そのなかに染色体を含む.この本体が生命の設計図といえるDNAであるが,ヒトの場合,その“設計図”には30億個もの塩基が並んでいる.このなかには遺伝子以外の領域が多くを占めるが,ある特定の長さの塩基配列が縦列に繰り返して並ぶものがあり,これを縦列反復配列といいヒトゲノムの約3%を占める1).このうち,繰り返し単位(リピート)が6~100塩基(bp)程度で数個から数百個並び,全体の長さが0.5~30kbpになるDNAがある.Jeffreysらはこれをセントロメアにある長大な縦列反復配列であるα-サテライトDNAと対比して,ミニサテライトと名付けた2).また,中村らはミニサテライトのうち多型性に富むものをVNTR(variable number of tandem repeat)と呼称している3).
参考文献
1) International Human Genome Sequencing Consortium:Initial sequencing and analysis of the human genome. Nature 409:860-921, 2001
2) Jeffreys AJ, Wilson V, Thein SL:Hypervariable ‘minisatellite' regions in human DNA. Nature 314:67-73, 1985
3) Nakamura Y, Leppert M, O'Connell P, et al:Variable number of tandem repeat(VNTR)markers for human gene mapping. Science 235:1616-1622, 1987
4) Jeffreys AJ:Genetic fingerprinting. Nat Med 11:1035-1039, 2005
5) Jeffreys AJ, Wilson V, Thein SL:Individual-specific ‘fingerprints' of human DNA. Nature 316:76-79, 1985
6) Gill P, Werrett DJ:Exclusion of a man charged with murder by DNA fingerprinting. Forensic Sci Int 35:145-148, 1987
7) Jeffreys AJ, Turner M, Debenham P:The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive casework. Am J Hum Genet 48:824-840, 1991
8) Jeffreys AJ, Brookfield JF, Semeonoff R:Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818-819, 1985
9) Signer EN, Dubrova YE, Jeffreys AJ, et al:DNA fingerprinting Dolly. Nature 394:329-330, 1998
10) Wong Z, Wilson V, Patel I, et al:Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet 51:269-288, 1987
11) Herrin G Jr : A comparison of models used for calculation of RFLP pattern frequencies. J Forensic Sci 37:1640-1651, 1992
12) National Research Council:DNA technology in forensic science National Academy Press, Washington DC, 1992
13) National Research Council:The evaluation of forensic DNA evidence. National Academy Press, Washington DC, 1996
14) Dubrova YE, Nesterov VN, Krouchinsky NG, et al:Human minisatellite mutation rate after the Chernobyl accident. Nature 380:683-686, 1996
15) Li HH, Gyllensten UB, Cui XF, et al:Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335:414-417, 1988
16) Nakamura Y, Carlson M, Krapcho K, et al:Isolation and mapping of a polymorphic DNA sequence(pMCT118)on chromosome 1p[D1S80]. Nucleic Acids Res 16:9364, 1988
17) Kasai K, Nakamura Y, White R:Amplification of a variable number of tandem repeats(VNTR)locus(pMCT118)by the polymerase chain reaction(PCR)and its application to forensic science. J Forensic Sci 35:1196-1200, 1990.
18) 法科学的DNA型判定法に関する技術作業グループ:日本人におけるMCT118型及びHLADQα型の出現頻度の再評価と他の民族集団データとの比較.科警研報告 48:171-185, 1995
19) Peterson BL, Su B, Chakraborty R, et al:World population data for the HLA-DQA1, PM and D1S80 loci with least and most common profile frequencies for combinations of loci estimated following NRC II guidelines. J Forensic Sci 45:118-146, 2000
20) Jeffreys AJ, Neumann R, Wilson V:Repeat unit sequence variation in minisatellites;a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60:473-485, 1990
21) Jeffreys AJ, MacLeod A, Tamaki K, et al:Minisatellite repeat coding as a digital approach to DNA typing. Nature 354:204-209, 1991
22) Jeffreys AJ, Monckton DG, Tamaki K, et al:Minisatellite variant repeat mapping;application to DNA typing and mutation analysis. DNA fingerprinting, State of the Science(Pena SDJ, et al. eds), Birkhäuser-Verlag, Basel, pp125-139, 1993
23) Rodriguez-Calvo MS, Bellas S, Soto JL, et al:Comparison of different electrophoretic methods for digital typing of the MS32(D1S8)locus. Electrophoresis 17:1294-1298, 1996
24) Hau P, Watson N:Sequencing and four-state minisatellite variant repeat mapping of the D1S7 locus(MS1)by fluorescence detection. Electrophoresis 21:1478-1483, 2000
25) Tamaki K, Monckton DG, MacLeod A, et al:Minisatellite variant repeat(MVR)mapping:analysis of ‘null' repeat units at DlS8. Hum Mol Genet 1:401-6, 1992. Erratum:Hum Mol Genet 1:558, 1992
26) 玉木敬二,山本敏充,打樋利英子,他:MVR-PCR法を用いた日本人におけるD1S8(MS32)のタイピングとアリルの解析.日法医誌 46:474-482, 1992
27) Tamaki K, Monckton DG, MacLeod A, et al:Four-state MVR-PCR;increased discrimination of digital DNA typing by simultaneous analysis of two polymorphic sites within minisatellite variant repeats at D1S8. Hum Mol Genet 2:1629-1632, 1993
28) Neil DL, Jeffreys AJ:Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. Hum Mol Genet 2:1129-1135, 1993
29) Huang XL, Tamaki K, Yamamoto T, et al:Analysis of allelic structures at the D7S21(MS31A)locus in the Japanese, using minisatellite variant repeat mapping by PCR(MVR-PCR). Ann Hum Genet 60:271-279, 1996
30) Armour JA, Harris PC, Jeffreys AJ:Allelic diversity at minisatellite MS205(D168309): evidence for polarized variability. Hum Mol Genet 2:1137-1145, 1993
31) May CA, Jeffreys AJ, Armour JA:Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205(D16S309). Hum Mol Genet 5:1823-1833, 1996
32) Buard J, Vergnaud G:Complex recombination events at the hypermutable minisatellite CEBl(D2S90). EMBO J 13:3203-3210, 1994
33) Andreassen R, Olaisen B:De novo mutations and allelic diversity at minisatellite locus D7S22 investigated by allele-specific four-state MVR-PCR analysis. Hum Mol Genet 7:2113-2120, 1998
34) Holmlund G, Lindblom B:Different ancestor alleles;a reason for the bimodal fragment size distribution in the minisatellite D2S44(YNH24). Eur J Hum Genet 6:597-602, 1998
35) Tamaki K, May CA, Dubrova YE, et al:Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum Mol Genet 8:879-888, 1999
36) Mizukoshi T, Tamaki K, Azumi J, et al:Allelic structures at hypervariable minisatellite B6.7 in Japanese show population specificity. J Hum Genet 47:232-238, 2002
37) Stead JD, Jeffreys AJ:Allele diversity and germline mutation at the insulin minisatellite. Hum Mol Genet 9:713-723, 2000
38) Stead JD, Buard J, Todd JA, et al:Influence of allele lineage on the role of the insulin minisatellite in susceptibility to type 1 diabetes. Hum Mol Genet 9:2929-2935, 2000
39) Jobling MA, Bouzekri N, Taylor PG:Hypervariable digital DNA codes for human paternal lineages:MVR-PCR at the Y-specific minisatellite, MSY1(DYF155S1). Hum Mol Genet 7:643-653, 1998
40) Monckton DG, Tamaki K, MacLeod A, et al:Allele-specific MVR-PCR analysis at minisatellite D1S8. Hum Mol Genet 2:513-519, 1993
41) Yamamoto T, Tamaki K, Kojima T, et al:Potential forensic applications of minisatellite variant repeat(MVR)mapping using the polymerase chain reaction(PCR)at DlS8. J Forensic Sci 39:743-750, 1994
42) Yamamoto T, Tamaki K, Kojima T, et al:DNA typing of the DlS8(MS32)locus by rapid detection minisatellite variant repeat(MVR)mapping using polymerase chain reaction(PCR)assay. Forensic Sci Int 66:69-75, 1994
43) Hopkins B, Williams NJ, Webb MB, et al:The use of minisatellite variant repeat-polymerase chain reaction(MVR-PCR)to determine the source of saliva on a used postage stamp. J Forensic Sci 39:526-531, 1994
44) Huang XL, Tamaki K, Yamamoto T, et al:Evaluation of the paternity probability on an application of minisatellite variant repeat mapping using polymerase chain reaction(MVR-PCR)to paternity testing. Leg Med 1:37-43, 1999
45) Tamaki K, Huang XL, Yamamoto T, et al:Applications of minisatellite variant repeat(MVR)mapping for maternal identification from remains of an infant and placenta. J Forensic Sci 40:695-700, 1995
46) Tamaki K, Huang X-L, Mizutani M, et al:The potential contribution of MVR-PCR to paternity probabilities in a case lacking a mother. J Forensic Sci 44:863-867, 1999
47) Yamamoto T, Tamaki K, Huang XL, et al:The application of minisatellite variant repeat mapping by PCR(MVR-PCR)in a paternity case showing false exclusion due to STR mutation. J Forensic Sci 46:374-378, 2001
48) Jeffreys AJ, Royle NJ, Wilson V, et al:Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332:278-281, 1988
49) Tamaki K, Brenner CH, Jeffreys AJ:Distinguishing minisatellite mutation from non-paternity by MVR-PCR. Forensic Sci Int 113:55-62, 2000
50) 玉木敬二,黄秀林,山本敏充,他:MVR-PCR分析によるMS32アリル構造の日本人における特徴.DNA多型 3:137-143, 1995
51) Armour JA, Anttinen T, May CA, et al:Minisatellite diversity supports a recent African origin for modern humans. Nat Genet 13:154-160, 1996
52) Stead JD, Jeffreys AJ:Structural analysis of insulin minisatellite alleles reveals unusually large differences in diversity between Africans and non-Africans. Am J Hum Genet 71:1273-1284, 2002
53) Jeffreys AJ, Tamaki K, MacLeod A, et al:Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 6:136-145, 1994
54) Jeffreys AJ, Barber R, Bois P, et al:Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis 20:1665-1675, 1999
55) Jeffreys AJ, Neil DL, Neumann R:Repeat instability at human minisatellites arising from meiotic recombination. EMBO J 17:4147-4157, 1998
56) Jeffreys AJ, Murray J, Neumann R:High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol Cell 2:267-273, 1998
掲載誌情報