文献詳細
文献概要
今月の主題 前立腺癌 総論
前立腺癌の発生と進展―分子生物学的アプローチ
著者: 井上貴博1 小川修1
所属機関: 1京都大学大学院医学研究科泌尿器科学
ページ範囲:P.1649 - P.1654
文献購入ページに移動はじめに
前立腺癌は罹患率の高い悪性腫瘍の一つで,米国では2009年には約192,000名の新患者数(米国男性の悪性疾患のうち罹患率は第1位,悪性疾患の約25%),約27,000名の死亡者数(第2位,9%)が推定されている1).わが国においても前立腺癌の罹患率は増加傾向にある.2020年には男性において肺癌,結腸癌と並んで最も頻度の高い癌になると推定され,2020年の前立腺癌による死亡率は,2000年の前立腺癌死亡率の実測値に対して約2.8倍にもなると予測されている2).
近年,腫瘍マーカーであるPSA(前立腺特異抗原)の普及もあって,限局性前立腺癌の状態で発見される症例が増加しており,これらは前立腺全摘術や放射線治療(外照射療法,小線源治療など)により根治が期待できる.一方,転移を有する進行癌や,根治的治療(外科的治療,放射線治療)後に再発・転移をきたす症例も存在する.その多くには内分泌療法(アンドロゲン除去療法,androgen deprivation therapy:ADT)が行われる.ADTは一時的には有効であるが,ほとんどの症例で数年以内に去勢抵抗性癌(Castration resistant prostate cancer:CRPC)に変異する3).最近はドセタキセルを用いた化学療法でCRPCの治療も様変わりしてきているが4,5),ドセタキセル治療も根治治療ではなく,ひとたびCRPCの状態に変異すると有効な治療法はない.したがって,この変異機序の解明が臨床上重要な課題である.
また前立腺癌の臨床的な自然史は多彩である.転移をきたし骨転移に伴う激しい痛みとともに急速に死に至る悪性度の高いものから,患者の生涯を通して症状を引き起こさない緩徐な進行をたどるものまで様々な臨床経過をとる.したがって,PSAスクリーニングが普及し前立腺生検を積極的に行うことによって,前立腺癌の過剰診断・過剰治療が相当数存在すると指摘する研究報告もある6).
このような背景を踏まえ,前立腺癌の分子生物学的研究の最近のトピックスを取り上げ,概説する.
前立腺癌は罹患率の高い悪性腫瘍の一つで,米国では2009年には約192,000名の新患者数(米国男性の悪性疾患のうち罹患率は第1位,悪性疾患の約25%),約27,000名の死亡者数(第2位,9%)が推定されている1).わが国においても前立腺癌の罹患率は増加傾向にある.2020年には男性において肺癌,結腸癌と並んで最も頻度の高い癌になると推定され,2020年の前立腺癌による死亡率は,2000年の前立腺癌死亡率の実測値に対して約2.8倍にもなると予測されている2).
近年,腫瘍マーカーであるPSA(前立腺特異抗原)の普及もあって,限局性前立腺癌の状態で発見される症例が増加しており,これらは前立腺全摘術や放射線治療(外照射療法,小線源治療など)により根治が期待できる.一方,転移を有する進行癌や,根治的治療(外科的治療,放射線治療)後に再発・転移をきたす症例も存在する.その多くには内分泌療法(アンドロゲン除去療法,androgen deprivation therapy:ADT)が行われる.ADTは一時的には有効であるが,ほとんどの症例で数年以内に去勢抵抗性癌(Castration resistant prostate cancer:CRPC)に変異する3).最近はドセタキセルを用いた化学療法でCRPCの治療も様変わりしてきているが4,5),ドセタキセル治療も根治治療ではなく,ひとたびCRPCの状態に変異すると有効な治療法はない.したがって,この変異機序の解明が臨床上重要な課題である.
また前立腺癌の臨床的な自然史は多彩である.転移をきたし骨転移に伴う激しい痛みとともに急速に死に至る悪性度の高いものから,患者の生涯を通して症状を引き起こさない緩徐な進行をたどるものまで様々な臨床経過をとる.したがって,PSAスクリーニングが普及し前立腺生検を積極的に行うことによって,前立腺癌の過剰診断・過剰治療が相当数存在すると指摘する研究報告もある6).
このような背景を踏まえ,前立腺癌の分子生物学的研究の最近のトピックスを取り上げ,概説する.
参考文献
1) American Cancer Society:Cancer Facts & Figures 2009 http://www.cancer.org/downloads/STT/STT_0.asp(2009年9月1日参照)
2) 日本泌尿器科学会(編):前立腺癌診療ガイドライン2006年版.金原出版,2006
3) Feldman BJ, Feldman D:The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34-45, 2001
4) Petrylak DP, Tangen CM, Hussain MH, et al:Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513-1520, 2004
5) Tannock IF, de Wit R, Berry WR, et al:Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502-1512, 2004
6) Frankel DM, Smith DG, Donovan J, et al:Screening for prostate cancer. Lancet 361:1122-1128, 2003
7) Tomlins AS, Rhodes RD, Perner S, et al:Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644-648, 2005
8) Tomlins AS, Laxman B, Dhanasekaran MS, et al:Distinct classes of chromosome rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448:595-601, 2007
9) Kumar-Sinha C, Tomlins AS, Chinnaiyan MA:Recurrent gene fusions in prostate cancer. Nature Rev Cancer 8:497-511, 2008
10) Klezovitch O, Risk M, Coleman I, et al:A casual role for ERG in neoplastic transformation of prostate epithelium. PNAS 105:2105-2110, 2008
11) Tomlins AS, Laxman B, Varambally S, et al:Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10:177-188, 2008
12) Barry M, Perner S, Demichells F, et al:TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer:clinical and biologic implications. Urology 70:630-633, 2007
13) Mehra R, Tomlins AS, Yu J, et al:Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 68:3584-3590, 2008
14) Li J, Yen C, Liaw D, et al:PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943-1947, 1997
15) Liaw D, Marsh DJ, Li J, et al:Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64-67, 1997
16) Steck PA, Pershouse MA, Jasser SA, et al:Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356-362, 1997
17) Stambolic V, Suzuki A, de la Pompa JL, et al:Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29-39, 1998
18) Suzuki H, Freije D, Nusskern DR, et al:Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58:204-209, 1998
19) Wang S, Gao J, Lei Q, et al:Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209-221 2003
20) Shimizu Y, Segawa T, Inoue T, et al:Increased Akt and phosphorylated Akt expression are associated with malignant biological features of prostate cancer in Japanese men. BJU Int 100:685-690, 2007
21) Ayala G, Thompson T, Yang G, et al:High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 10:6572-6578, 2004
22) Kreisberg JI, Malik SN, Prihoda TJ, et al:Phosphorylation of Akt(Ser473)is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res 64:5232-5236, 2004
23) Inoue T, Kobayashi T, Terada N, et al:Roles of androgen-dependent and-independent activation of signal transduction pathways for cell proliferation of prostate cancer cells. Expert Rev Endocrinol Metab 5:689-704, 2007
24) Majumder PK, Febbo PG, Bikoff R, et al:mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10:594-601, 2004
25) Nardella C, Chen Z, Salmena L, et al:Aberrant Rheb-mediated mTORC1 activation and Pten haplosufficiency are cooperative oncogenic events. Gene Dev 22:2172-2177, 2009
26) Guertin D, Stevens MD, Saitoh M, et al:mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell:15:148-159, 2009.
27) Inoue T, Yoshida T, Shimizu Y, et al:Requirement of androgen-dependent activation of protein kinase Czeta for androgen-dependent cell proliferation in LNCaP Cells and its roles in transition to androgen-independent cells. Mol Endocrinol 20:3053-3069, 2006
28) Fernandez-Marcos JP, Abu-Baker S, Joshi J, et al:Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-κB activation and invasive prostate cancer. PNAS 106:12962-12967, 2009
29) Gregory CW, Johnson RT Jr, Mohler JL, et al:Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 61:2892-2898, 2001
30) Agoulnik IU, Vaid A, Nakka M, et al:Androgen modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66:10594-10602, 2006
31) Guo Z, Dai B, Jiang T, et al:Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10:309-319, 2006
32) Mahajan NP, Liu Y, Majumder S, et al:Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. PNAS 104:8438-8443, 2007
33) Mohler JL, Gregory CW, Ford OH 3rd, et al:The androgen axis in recurrent prostate cancer. Clin Cancer Res 10:440-448, 2004
34) Titus MA, Schell MJ, Lih FB, et al:Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 11:4653-4657, 2005
35) Stanbrough M, Bubley JG, Ross K, et al:Increased Expression of Genes Converting Adrenal Androgens to Testosterone in Androgen-Independent Prostate Cancer Cancer Res 66:2815-2825, 2006
36) Montgomery BR, Mostaghel AE, Vessella R, et al:Maintenance of intratumoral androgens in metastatic prostate cancer:a mechanism for castration-resistant tumor growth. Cancer Res 68:4447-4454, 2008
37) Locke AJ, Guns SE, Lubik AA, et al:Androgen Levels Increase by Intratumoral De novo Steroidogenesis during Progression of Castration-Resistant Prostate Cancer. Cancer Res 68:6407-6415, 2008
38) Attard G, Reid HM A, Yap AT, et al:Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 26:4563-4571, 2008
39) Leong GK, Wang BE, Johnson L, et al:Generation of a prostate from a single adult stem cell. Nature 456:804-810, 2008
40) Maitland JN, Collins TA:Prostate cancer stem cell:a new target therapy. J Clin Oncol 26:2862-2870, 2008
41) Nelson GW, de Marzo MA, Yegnasubramanian S:Minireview:epigenetic alterations in human prostate cancers. Endocrinology 150:3991-4002, 2009
42) Witte SJ:Prostate cancer genomics:towards a new understanding. Nat Rev Genetics 10:77-82, 2009
掲載誌情報