文献詳細
文献概要
今月の主題 骨髄増殖性疾患 話題
骨髄線維化の機序
著者: 後藤明彦1 大屋敷一馬1
所属機関: 1東京医科大学内科学第一講座
ページ範囲:P.309 - P.314
文献購入ページに移動1.骨髄線維化とサイトカイン
BCR-ABL陰性の骨髄増殖性腫瘍(myeloproliferative neoplasms;MPN)ではいずれの病型でも骨髄の線維化を合併しうる.原発性骨髄線維症(primary myelofibrosis;PMF)では細胞増殖期を経て比較的早期から,本態性血小板血症(essential thrombocythemia;ET)や真性多血症(polycythemia vera;PV)では経過中あるいは終末期に骨髄の線維化をしばしば認める.
この線維化は骨髄へのコラーゲン線維の沈着が主体で,骨新生(骨硬化)と血管新生を伴っている.コラーゲン線維の主要な産生細胞である線維芽細胞は非クローナルであり,機能的には正常であることが証明されている1).したがってMPNは幹細胞のクローナルな疾患であるが,骨髄線維化は反応性のものであると考えられている.そして,これらの疾患では,線維形成を促進させるサイトカインや血管新生促進性サイトカインの過剰発現がみられること1,2)から,この反応性の線維化には巨核球や血小板,単球などが産生するサイトカイン,特に,病的造血細胞クローンの巨核球のネクローシスによって放出されるサイトカインによる骨髄内サイトカイン過剰状態が関与していることが示唆されている(図1).
BCR-ABL陰性の骨髄増殖性腫瘍(myeloproliferative neoplasms;MPN)ではいずれの病型でも骨髄の線維化を合併しうる.原発性骨髄線維症(primary myelofibrosis;PMF)では細胞増殖期を経て比較的早期から,本態性血小板血症(essential thrombocythemia;ET)や真性多血症(polycythemia vera;PV)では経過中あるいは終末期に骨髄の線維化をしばしば認める.
この線維化は骨髄へのコラーゲン線維の沈着が主体で,骨新生(骨硬化)と血管新生を伴っている.コラーゲン線維の主要な産生細胞である線維芽細胞は非クローナルであり,機能的には正常であることが証明されている1).したがってMPNは幹細胞のクローナルな疾患であるが,骨髄線維化は反応性のものであると考えられている.そして,これらの疾患では,線維形成を促進させるサイトカインや血管新生促進性サイトカインの過剰発現がみられること1,2)から,この反応性の線維化には巨核球や血小板,単球などが産生するサイトカイン,特に,病的造血細胞クローンの巨核球のネクローシスによって放出されるサイトカインによる骨髄内サイトカイン過剰状態が関与していることが示唆されている(図1).
参考文献
1) Castro-Malaspina H, Gay RE, Jhanwar SC, et al:Characteristics of bone marrow fibroblast colony-forming cells(CFU-F)and their progeny in patients with myeloproliferative disorders. Blood 59:1046-1054, 1982
2) Rameshwar P, Denny TN, Stein D, et al:Monocyte adhesion in patients with bone marrow fibrosis is required for the production of fibrogenic cytokines. Potential role for interleukin-1 and TGF-beta. J Immunol 153:2819-2830, 1994
3) Martyre MC, Magdelenat H, Bryckaert MC, et al:Increased intraplatelet levels of platelet-derived growth factor and transforming growth factor-beta in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 77:80-86, 1991
4) Terui T, Niitsu Y, Mahara K, et al:The production of transforming growth factor-beta in acute megakaryoblastic leukemia and its possible implications in myelofibrosis. Blood 75:1540-1548, 1990
5) Martyré MC, Le Bousse-Kerdiles MC, Romquin N, et al:Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol 97:441-448, 1997
6) Di Raimondo F, Azzaro MP, Palumbo GA, et al:Elevated vascular endothelial growth factor(VEGF)serum levels in idiopathic myelofibrosis. Leukemia 15:976-980, 2001
7) Chagraoui H, Tulliez M, Smayra T, et al:Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101:2983-2989, 2003
8) Bock O, Loch G, Schade U, et al:Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br J Haematol 130:76-82, 2005
9) Le Bousse-Kerdilès MC, Martyré MC;French INSERM research network on Idiopathic Myelofibrosis:Involvement of the fibrogenic cytokines, TGF-beta and bFGF, in the pathogenesis of idiopathic myelofibrosis. Pathol Biol(Paris) 49:153-157, 2001
10) Chagraoui H, Komura E, Tulliez M, et al:Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 100:3495-3503, 2002
11) Vannucchi AM, Bianchi L, Cellai C, et al:Development of myelofibrosis in mice genetically impaired for GATA-1 expression(GATA-1(low)mice). Blood 100:1123-1132, 2002
12) Gurbuxani S, Vyas P, Crispino JD:Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 103:399-406, 2004
13) Vannucchi AM, Pancrazzi A, Guglielmelli P, et al:Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis. Am J Pathol 167:849-858, 2005
14) Vannucchi AM, Bianchi L, Paoletti F, et al:A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood 105:3493-3501, 2005
15) Nakao A, Imamura T, Souchelnytskyi S, et al:TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353-5362, 1997
16) Massagué J, Wotton D:Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745-1754, 2000
17) Chen CZ, Li M, de Graaf D, et al:Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc Natl Acad Sci U S A 99:15468-15473, 2002
18) Bühring HJ, Muller CA, Letarte M, et al:Endoglin is expressed on a subpopulation of immature erythroid cells of normal human bone marrow. Leukemia 5:841-847, 1991
19) López-Casillas F, Wrana JL, Massagué J:Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435-1444, 1993
20) Ohta M, Greenberger JS, Anklesaria P, et al:Two forms of transforming growth factor-beta distinguished by multipotential haematopoietic progenitor cells. Nature 329:539-541, 1987
21) Kuroda H, Matsunaga T, Terui T, et al:Decrease of Smad4 gene expression in patients with essential thrombocythaemia may cause an escape from suppression of megakaryopoiesis by transforming growth factor-beta1. Br J Haematol 124:211-220, 2004
hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood 88:4534-4546, 1996
23) Rooke HM, Vitas MR, Crosier PS, et al:The TGF-beta type Ⅱ receptor in chronic myeloid leukemia:analysis of microsatellite regions and gene expression. Leukemia 13:535-541, 1999
24) Ciurea SO, Merchant D, Mahmud N, et al:Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood 110:986-993, 2007
25) Jenkins BJ, Grail D, Nheu T, et al:Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nat Med 11:845-852, 2005
26) Tefferi A, Thiele J, Orazi A, et al:Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis:recommendations from an ad hoc international expert panel. Blood 110:1092-1097, 2007
27) James C, Ugo V, Le Couédic JP, et al:A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144-1148, 2005
28) Lacout C, Pisani DF, Tulliez M, et al:JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108:1652-1660, 2006
29) Wernig G, Mercher T, Okabe R, et al:Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107:4274-4281, 2006
30) Tiedt R, Hao-Shen H, Sobas MA, et al:Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:3931-3940, 2008
31) Hussein K, Brakensiek K, Buesche G, et al:Different involvement of the megakaryocytic lineage by the JAK2 V617F mutation in Polycythemia vera, essential thrombocythemia and chronic idiopathic myelofibrosis. Ann Hematol 86:245-253, 2007
32) Douglas VK, Tallman MS, Cripe LD, et al:Thrombopoietin administered during induction chemotherapy to patients with acute myeloid leukemia induces transient morphologic changes that may resemble chronic myeloproliferative disorders. Am J Clin Pathol 117:844-850, 2002
33) Kuter DJ, Mufti GJ, Bain BJ, et al:Evaluation of bone marrow reticulin formation in chronic immune thrombocytopenia patients treated with romiplostim. Blood 114:3748-3756, 2009
34) Pikman Y, Lee BH, Mercher T, et al:MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3:e270, 2006
35) Pardanani AD, Levine RL, Lasho T, et al:MPL515 mutations in myeloproliferative and other myeloid disorders:a study of 1182 patients. Blood 108:3472-3476, 2006
36) Staerk J, Lacout C, Sato T, et al:An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 107:1864-1871, 2006
掲載誌情報