icon fsr

文献詳細

雑誌文献

精神医学57巻12号

2015年12月発行

文献概要

ミニレビュー

グルタミン酸ネットワークが統合失調症の認知機能障害に関与する—52種類の認知機能の全ゲノム関連研究

著者: 大井一高12 橋本亮太13 山森英長1 安田由華1 藤本美智子1 武田雅俊13

所属機関: 1大阪大学大学院医学系研究科情報統合医学講座精神医学教室 2 3大阪大学大学院連合小児発達学研究科附属子どものこころの分子統御機構研究センター疾患関連分子解析部門

ページ範囲:P.1041 - P.1054

文献購入ページに移動
抄録
 認知機能障害は統合失調症患者における中核症状である。これらの障害は統合失調症の遺伝基盤を理解するための効果的なツールになり得る。本研究は,認知機能障害に関わる遺伝子多型が統合失調症の病態に関わる機能的な遺伝子ネットワークに集積しているかを検討した。まず,411名の健常者を対象に統合失調症と関連する52種類の認知機能の全ゲノム関連解析(GWAS)を行った。続いて,257名の統合失調症患者を用いて,GWAS結果の再現を試み,それらの結果のメタ解析を行った。単一の遺伝子や遺伝子多型よりもむしろ遺伝子ネットワークのほうが統合失調症の脆弱性に強く関連しているかもしれないので,再現できた遺伝子多型周辺に存在する遺伝子の遺伝子ネットワーク解析を行った。GWASでは,p<1.0×10-4の緩い統計学的閾値にて認知機能と関連する3,054個の遺伝子多型を見出した。3,054個の遺伝子多型の中で,191個の遺伝子多型は統合失調症においても認知機能と関連していた(p<0.05)。しかし,メタ解析では,ゲノムワイド有意水準を満たす遺伝子多型を見出すことはできなかった(p>5.0×10-8)。再現できた191個の遺伝子多型の中で115個は,遺伝子多型から10kb以内に遺伝子が存在した(60.2%)。これらの遺伝子多型はp=2.50×10-5からp=9.40×10-8の範囲の中程度の統計学的水準で認知機能と関連していた。再現遺伝子多型から10kb以内に存在する遺伝子は,グルタミン酸受容体活性(FDR q=4.49×10-17)と主要組織適合抗原複合体クラスIに関連する免疫系ネットワーク(FDR q=8.76×10-11)に有意に集約された。本研究の結果は,統合失調症における認知機能障害に関連する遺伝子多型がNMDA型グルタミン酸受容体ネットワークと関連することを示した。

参考文献

1) Akbarian S, Sucher NJ, Bradley D, et al:Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19-30, 1996
2) Amitai N, Markou A:Disruption of performance in the five-choice serial reaction time task induced by administration of N-methyl-D-aspartate receptor antagonists:Relevance to cognitive dysfunction in schizophrenia. Biol Psychiatry 68:5-16, 2010
3) Benyamin B, Pourcain B, Davis OS, et al:Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19:253-258, 2014
4) Berrettini WH:Genetic bases for endophenotypes in psychiatric disorders. Dialogues Clin Neurosci 7:95-101, 2005
5) Chen WJ, Liu SK, Chang CJ, et al:Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry 155:1214-1220, 1998
6) Cox AJ, Hugenschmidt CE, Raffield LM, et al:Heritability and genetic association analysis of cognition in the Diabetes Heart Study. Neurobiol Aging 35:1958. e1953-1958. e1912, 2014
7) Coyle JT:Glutamate and schizophrenia:Beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365-384, 2006
8) Das S, Sasaki YF, Rothe T, et al:Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393:377-381, 1998
9) Davies G, Tenesa A, Payton A, et al:Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry 16:996-1005, 2011
10) Fourgeaud L, Davenport CM, Tyler CM, et al:MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc Natl Acad Sci U S A 107:22278-22283, 2010
11) Green MF:Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry 67(Suppl 9):3-8, discussion 36-42, 2006
12) Han B, Eskin E:Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet 88:586-598, 2011
13) Hasan K, Cheung C, Kaul Z, et al:CARF is a vital dual regulator of cellular senescence and apoptosis. J Biol Chem 284:1664-1672, 2009
14) Hashimoto R, Ohi K, Yasuda Y, et al:The impact of a genome-wide supported psychosis variant in the ZNF804A gene on memory function in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 153B:1459-1464, 2010
15) Hashimoto R, Ikeda M, Ohi K, et al:Genome-wide association study of cognitive decline in schizophrenia. Am J Psychiatry 170:683-684, 2013
16) Hill WD, Davies G, van de Lagemaat LN, et al:Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Transl Psychiatry 4:e341, 2014
17) Hindorff LA, Sethupathy P, Junkins HA, et al:Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362-9367, 2009
18) Husted JA, Lim S, Chow EW, et al:Heritability of neurocognitive traits in familial schizophrenia. Am J Med Genet B Neuropsychiatr Genet 150B:845-853, 2009
19) Ikeda M, Aleksic B, Kinoshita Y, et al:Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 69:472-478, 2011
20) Kahn RS, Keefe RS:Schizophrenia is a cognitive illness:Time for a change in focus. JAMA Psychiatry 70:1107-1112, 2013
21) Kakegawa W, Miyoshi Y, Hamase K, et al:D-serine regulates cerebellar LTD and motor coordination through the delta2 glutamate receptor. Nat Neurosci 14:603-611, 2011
22) Krystal JH, Anand A, Moghaddam B:Effects of NMDA receptor antagonists:Implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 59:663-664, 2002
23) Lencz T, Knowles E, Davies G, et al:Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia:A report from the Cognitive Genomics consorTium(COGENT). Mol Psychiatry 19:168-174, 2014
24) Luciano M, Hansell NK, Lahti J, et al:Whole genome association scan for genetic polymorphisms influencing information processing speed. Biol Psychol 86:193-202, 2011
25) McAllister AK:Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 75:262-268, 2014
26) Mueller HT, Meador-Woodruff JH:NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71:361-370, 2004
27) O'Donovan MC, Craddock N, Norton N, et al:Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40:1053-1055, 2008
28) Ohi K, Hashimoto R, Yasuda Y, et al:TATA box-binding protein gene is associated with risk for schizophrenia, age at onset and prefrontal function. Genes Brain Behav 8:473-480, 2009
29) Ohi K, Hashimoto R, Yamamori H, et al:The impact of the genome-wide supported variant in the cyclin M2 gene on gray matter morphology in schizophrenia. Behav Brain Funct 9:40, 2013
30) Ohi K, Hashimoto R, Ikeda M, et al:Glutamate Networks Implicate Cognitive Impairments in Schizophrenia:Genome-Wide Association Studies of 52 Cognitive Phenotypes. Schizophr Bull 41:909-918, 2015
evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118-119, 2006
32) Posthuma D, de Geus EJ, Boomsma DI:Perceptual speed and IQ are associated through common genetic factors. Behav Genet 31:593-602, 2001
33) Purcell SM, Wray NR, Stone JL, et al:Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748-752, 2009
34) Ripke S, Neale BM, Corvin A, et al:Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421-427, 2014
35) Ripke S, Sanders AR, Kendler KS, et al:Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969-976, 2011
36) Roberts AC, Diez-Garcia J, Rodriguiz RM, et al:Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation. Neuron 63:342-356, 2009
37) Schork AJ, Thompson WK, Pham P, et al:All SNPs are not created equal:Genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet 9:e1003449, 2013
38) Shatz CJ:MHC class I:an unexpected role in neuronal plasticity. Neuron 64:40-45, 2009
39) Stefansson H, Ophoff RA, Steinberg S, et al:Common variants conferring risk of schizophrenia. Nature 460:744-747, 2009
40) Sullivan PF, Kendler KS, Neale MC:Schizophrenia as a complex trait:Evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187-1192, 2003
41) Takata A, Iwayama Y, Fukuo Y, et al:A population-specific uncommon variant in GRIN3A associated with schizophrenia. Biol Psychiatry 73:532-539, 2013
42) Tarabeux J, Kebir O, Gauthier J, et al:Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry 1:e55, 2011
43) Toulopoulou T, Goldberg TE, Mesa IR, et al:Impaired intellect and memory:A missing link between genetic risk and schizophrenia? Arch Gen Psychiatry 67:905-913, 2010
44) Van Horn MR, Sild M, Ruthazer ES:D-serine as a gliotransmitter and its roles in brain development and disease. Front Cell Neurosci 7:39, 2013
45) Xu Z, Taylor JA:SNPinfo:Integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37:600-605, 2009
46) Yang J, Manolio TA, Pasquale LR, et al:Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43:519-525, 2011
47) Zuberi K, Franz M, Rodriguez H, et al:GeneMANIA prediction server 2013 update. Nucleic Acids Res 41:W115-122, 2013

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-126X

印刷版ISSN:0488-1281

雑誌購入ページに移動
icon up
あなたは医療従事者ですか?