icon fsr

文献詳細

雑誌文献

精神医学59巻9号

2017年09月発行

文献概要

特集 精神疾患の生物学的診断指標—現状と開発研究の展望

統合失調症バイオマーカーとしてのミスマッチ陰性電位

著者: 藤岡真生1 越山太輔1 多田真理子1 切原賢治1 永井達哉1 荒木剛1 笠井清登1

所属機関: 1東京大学大学院医学系研究科精神医学分野

ページ範囲:P.817 - P.825

文献購入ページに移動
統合失調症におけるバイオマーカーの必要性
 統合失調症は,幻覚,妄想などの陽性症状,意欲欠如や感情鈍麻といった陰性症状,および遂行機能障害などの認知機能障害を主症状とする精神障害である。前駆期,初発期,慢性期の順に経過することが多い。前駆期には,社会的・職業的な機能低下や微弱な精神病症状を呈する。初発期にはじめて本格的な精神病症状を呈し,統合失調症と診断されることが多い。その後数年が経過して慢性期に至る。現在,統合失調症を含むほとんどの精神障害の診断は,患者の訴える症状や徴候の観察に基づいて行われている。本来ならば,医学的診断は病因や病態生理に基づくべきである。しかし,ほとんどの精神障害で病態生理の多くが明らかになっていない現状では,診断は症候の観察に頼らざるを得ない。こうした臨床診断に基づき生物学的研究が行われてきたが,その結果,同じ臨床診断の中に異なる生物学的な基盤を持つ集団が混在すること20)や,異なる臨床診断でも同じ生物学的な基盤を共有すること24)が報告されている。したがって,バイオマーカーを用いて生物学的に均質な患者集団を分類することができれば,予後予測,治療反応性の予測,新規治療法の開発などに有用であることが期待される16)
 バイオマーカーは,患者での研究においてより信頼性が高いことや臨床的に意味がある指標であることが重要だが,生物学的基盤の解明のためにはモデル動物の作出と解析も重要となる。そのためには,ヒトや動物で共通に計測できるトランスレータブルなバイオマーカーの開発が求められる。統合失調症ではこれまでに多くの生物学的研究が行われてきたが,上記のような条件を満たすバイオマーカーはそれほど多くはない。その中で有望な候補として考えられるのがミスマッチ陰性電位(mismatch negativity;MMN)である。

参考文献

1) Berk M:The classification of biomarkers. JAMA Psychiatry 72:1056-1057, 2015
2) Bodatsch M, Brockhaus-Dumke A, Klosterkötter J, et al:Forecasting psychosis by event-related potentials-systematic review and specific meta-analysis. Biol Psychiatry 77:951-958, 2015
3) Dima D, Frangou S, Burge L, et al:Abnormal intrinsic and extrinsic connectivity within the magnetic mismatch negativity brain network in schizophrenia:a preliminary study. Schizophr Res 135:23-27, 2012
4) Duncan CC, Barry RJ, Connolly JF, et al:Event-related potentials in clinical research:guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883-1908, 2009
5) Erickson MA, Ruffle A, Gold JM:A meta-analysis of mismatch negativity in schizophrenia:from clinical risk to disease specificity and progression. Biol Psychiatry 79:980-987, 2016
6) Featherstone RE, Shin R, Kogan JH, et al:Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity:implications for schizophrenia prodromal population. Neurobiol Dis 73:289-295, 2015
7) Featherstone RE, Melnychenko O, Siegel SJ:Mismatch negativity in preclinical models of schizophrenia. Schizophr Res(in press)
8) Fishman YI, Steinschneider M:Searching for the mismatch negativity in primary auditory cortex of the awake monkey:deviance detection or stimulus specific adaptation? J Neurosci 32:15747-15758, 2012
9) Fusar-Poli P, Bonoldi I, Yung AR, et al:Predicting psychosis. Arch Gen Psychiatry 69:220-229, 2012
10) Garrido MI, Friston KJ, Kiebel SJ, et al:The functional anatomy of the MMN:a DCM study of the roving paradigm. Neuroimage 42:936-944, 2008
11) Gil-da-Costa R, Stoner GR, Fung R, et al:Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proc Natl Acad Sci U S A 110:15425-15430, 2013
12) Hamm JP, Yuste R:Somatostatin interneurons control a key component of mismatch negativity in mouse visual cortex. Cell Rep 16:597-604, 2016
13) Harms L, Michie PT, Näätänen R:Criteria for determining whether mismatch responses exist in animal models:focus on rodents. Biol Psychol 116:28-35, 2016
14) Harms L, Fulham WR, Todd J, et al:Late deviance detection in rats is reduced, while early deviance detection is augmented by the NMDA receptor antagonist MK-801. Schizophr Res(in press)
15) Hashimoto T, Bazmi HH, Mirnics K, et al:Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 165:479-489, 2008
16) Insel TR, Cuthbert BN:Brain disorders? Precisely. Science 348:499-500, 2015
17) Jääskeläinen IP, Ahveninen J, Bonmassar G, et al:Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci U S A 101:6809-6814, 2004
18) Javitt DC, Steinschneider M, Schroeder CE, et al:Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation:implications for schizophrenia. Proc Natl Acad Sci U S A 93:11962-11967, 1996
19) Kantrowitz JT, Epstein ML, Lee M, et al:Improvement in mismatch negativity generation during d-serine treatment in schizophrenia:correlation with symptoms. Schizophr Res(in press)
20) Karalunas SL, Fair D, Musser ED, et al:Subtyping attention-deficit/hyperactivity disorder using temperament dimensions:toward biologically based nosologic criteria. JAMA psychiatry 71:1015-1024, 2014
21) Kawakubo Y, Kamio S, Nose T, et al:Phonetic mismatch negativity predicts social skills acquisition in schizophrenia. Psychiatry Res 152:261-265, 2007
22) Komatsu M, Takaura K, Fujii N:Mismatch negativity in common marmosets:whole-cortical recordings with multi-channel electrocorticograms. Sci Rep 5:15006, 2015
23) Koshiyama D, Kirihara K, Tada M, et al:Duration and frequency mismatch negativity shows no progressive reduction in early stages of psychosis. Schizophr Res(in press)
24) Lee SH, Ripke S, Neale BM, et al:Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45:984-994, 2013
25) Light GA, Braff DL:Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62:127-136, 2005
26) Maess B, Jacobsen T, Schröger E, et al:Localizing pre-attentive auditory memory-based comparison:magnetic mismatch negativity to pitch change. Neuroimage 37:561-571, 2007
27) Miyanishi T, Sumiyoshi T, Higuchi Y, et al:LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia. PLoS One 8:8-13, 2013
28) Moghaddam B, Krystal JH:Capturing the angel in angel dust:twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38:942-949, 2012
29) Nagai T, Tada M, Kirihara K, et al:Auditory mismatch negativity and P3a in response to duration and frequency changes in the early stages of psychosis. Schizophr Res 150:547-554, 2013
30) Nagai T, Tada M, Kirihara K, et al:Mismatch negativity as a “translatable” brain marker toward early intervention for psychosis:a review. Front Psychiatry 4:1-10, 2013
31) Nagai T, Kirihara K, Tada M, et al:Reduced mismatch negativity is associated with increased plasma level of glutamate in first-episode psychosis. Sci Rep 7:2258, 2017
32) Opitz B, Rinne T, Mecklinger A, et al:Differential contribution of frontal and temporal cortices to auditory change detection:fMRI and ERP results. Neuroimage 15:167-174, 2002
33) Paulus MP:Pragmatism instead of mechanism:a call for impactful biological psychiatry. JAMA Psychiatry 72:631-632, 2015
34) Penttilä M, Jääskeläinen E, Hirvonen N, et al:Duration of untreated psychosis as predictor of long-term outcome in schizophrenia:systematic review and meta-analysis. Br J Psychiatry 205:88-94, 2014
35) Perez VB, Tarasenko M, Miyakoshi M, et al:Mismatch negativity is a sensitive and predictive biomarker of perceptual learning during auditory cognitive training in schizophrenia. Neuropsychopharmacology:1-24, 2017
36) Pine DS, Leibenluft E:Biomarkers with a mechanistic focus. JAMA Psychiatry 72:633-634, 2015
37) Rasser PE, Schall U, Todd J, et al:Gray matter deficits, mismatch negativity, and outcomes in schizophrenia. Schizophr Bull 37:131-140, 2011
38) Rissling AJ, Miyakoshi M, Sugar CA, et al:Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia. Neuroimage Clin 6:424-437, 2014
39) Rosburg T, Kreitschmann-Andermahr I:The effects of ketamine on the mismatch negativity(MMN)in humans-a meta-analysis. Clin Neurophysiol 127:1387-1394, 2016
40) Salisbury DF, Kuroki N, Kasai K, et al:Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch Gen Psychiatry 64:521-529, 2007
41) Suga M, Nishimura Y, Kawakubo Y, et al:Magnetoencephalographic recording of auditory mismatch negativity in response to duration and frequency deviants in a single session in patients with schizophrenia. Psychiatry Clin Neurosci 70:295-302, 2016
42) Sweet RA, Bergen SE, Sun Z, et al:Anatomical evidence of impaired feedforward auditory processing in schizophrenia. Biol Psychiatry 61:854-864, 2007
43) Takahashi H, Rissling AJ, Pascual-Marqui R, et al:Neural substrates of normal and impaired preattentive sensory discrimination in large cohorts of nonpsychiatric subjects and schizophrenia patients as indexed by MMN and P3a change detection responses. Neuroimage 66:594-603, 2013
44) Takaura K, Fujii N:Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys-a possible neural mechanism for mismatch negativity. Eur J Neurosci 43:516-528, 2016
45) Thomas ML, Green MF, Hellemann G, et al:Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia. JAMA Psychiatry 74:37-46, 2017
46) Ulanovsky N, Las L, Nelken I:Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391-398, 2003
47) Wacongne C, Changeux JP, Dehaene S:A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665-3678, 2012
48) Yamasue H, Yamada H, Yumoto M, et al:Abnormal association between reduced magnetic mismatch field to speech sounds and smaller left planum temporale volume in schizophrenia. Neuroimage 22:720-727, 2004
49) Youn T, Park HJ, Kim JJ, et al:Altered hemispheric asymmetry and positive symptoms in schizophrenia:equivalent current dipole of auditory mismatch negativity. Schizophr Res 59:253-260, 2003

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-126X

印刷版ISSN:0488-1281

雑誌購入ページに移動
icon up
あなたは医療従事者ですか?