1)Huckvale K, Venkatesh S, Christensen H:Toward clinical digital phenotyping:a timely opportunity to consider purpose, quality, and safety. NPJ Digit Med 2:1-11, 2019
2)Stone AA, Shiffman S:Capturing momentary, self-report data:a proposal for reporting guidelines. Ann Behav Med 24:236-243, 2002
3)Paulhus DL:Socially Desirable Responding on Self-Reports. In:Zeigler-Hill V, Shackelford T, ed. Encyclopedia of Personality and Individual Differences. Springer, New York, pp1-5, 2017
4)Sariyska R, Rathner EM, Baumeister H, et al:Feasibility of linking molecular genetic markers to real-world social network size trsacked on smartphones. Front Neurosci 12:945, 2018
5)Furr SR, Westefeld JS, McConnell GN, et al:Suicide and depression among college students:a decade later. Prof Psychol Res Pr 32:97-100, 2001
6)Borson S, Frank L, Bayley P, et al:Improving dementia care:the role of screening and detection of cognitive impairment. Alzheimers Dement 9:151-159, 2013
7)Kapur S, Phillips AG, Insel TR:Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol Psychiatry 17:1174-1179, 2012
8)Sobolev M, Gullapalli BT, Rahman T:Advancing the science of digital biomarkers. In:Proceedings of the 2021 Workshop on Future of Digital Biomarkers(DigiBiom '21). Association for Computing Machinery, New York, pp1-2, 2021
9)World Health Organization:Draft global strategy on digital health 2020-2024. World Health Organization, Geneva, 2019
10)厚生労働省:データヘルス改革推進本部. https://www.mhlw.go.jp/stf/shingi2/0000148424.html(2022年1月15日閲覧)
11)Piau A, Wild K, Mattek N, et al:Current state of digital biomarker technologies for real-life, home-based monitoring of cognitive function for mild cognitive impairment to mild Alzheimer disease and implications for clinical care:systematic review. J Med Internet Res 21:e12785, 2019
12)Torous J, Kiang MV, Lorme J, et al:New tools for new research in psychiatry:a scalable and customizable platform to empower data driven smartphone research. JMIR Ment Health 3:e16, 2016
13)Torous J, Rodriguez J, Powell A:The new digital divide for digital biomarkers. Digit biomark 1:87-91, 2017
14)Wang R, Campbell AT, Zhou X:Using opportunistic face logging from smartphone to infer mental health:challenges and future directions. In:Association for Computing Machinery, Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. New York, pp683-692, 2015
15)Markowetz A, Błaszkiewicz K, Montag C, et al:Psycho-informatics:big data shaping modern psychometics. Med Hypotheses 82:405-411, 2014
16)Roh T, Bong K, Hong S, et al:Wearable mental-health monitoring platform with independent component analysis and nonlinear chaotic analysis. Annu Int Conf IEEE Eng Med Biol Soc 2012:4541-4544, 2012
17)Valenza G, Nardelli M, Lanata A, et al:Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE J Biomed Health Inform 18:1625-1635, 2013
18)Kappeler-Setz C, Gravenhorst F, Schumm J:Towards long term monitoring of electrodermal activity in daily life. Pers Ubiquitous Comput 17:261-271, 2013
19)Aung MH, Matthews M, Choudhury T:Sensing behavioral symptoms of mental health and delivering personalized interventions using mobile technologies. Depress Anxiety 34:603-609, 2017
20)Farhan AA, Yue C, Morillo R, et al:Behavior vs. introspection:refining prediction of clinical depression via smartphone sensing data. In:2016 IEEE Wireless Health(WH), pp1-8, 2016
21)Wang R, Wang W, da Silva A, et al:Tracking Depression Dynamics in College Students Using Mobile Phone and Wearable Sensing. Proceedings of the ACM Interactive, Mobile, Wearable and Ubiquitous Technologies 2, pp1-26, 2018
22)Santani D, Labhart F, Landolt S, et al:DrinkSense:characterizing youth drinking behavior using smartphones. IEEE Trans Mob Comput 17:2279-2292, 2018
23)Chen Z, Lin M, Chen F, et al:Unobtrusive sleep monitoring using smartphones. In:Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare(PervasiveHealth '13). ICST(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, pp145-152, 2013
24)Abdullah S, Matthews M, Murnane EL, et al:Towards circadian computing:“early to bed and early to rise” makes some of us unhealthy and sleep deprived. In:Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing(UbiComp '14). Association for Computing Machinery, New York, pp673-684, 2014
25)Exposito M, Hernandez J, Picard RW:Affective keys:towards unobtrusive stress sensing of smartphone users. In:Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct(MobileHCI '18). Association for Computing Machinery, New York, pp139-145, 2018
26)Pimenta A, Carneiro D, Novais P, et al:Monitoring mental fatigue through the analysis of keyboard and mouse interaction patterns. In:Pan JS, Polycarpou MM, Woźniak M, et al ed. Hybrid Artificial Intelligence Systems. HAIS 2013. Springer, New York, pp222-231, 2013
27)Messner EM, Sariyska R, Mayer B, et al:Insights-Future Implications of Passive Smartphone Sensing in the Therapeutic Context. Verhaltenstherapie:1-10, 2019
28)Faurholt-Jepsen M, Vinberg M, Frost M, et al:Smartphone data as an electronic biomarker of illness activity in bipolar disorder. Bipolar Disord 17:715-728, 2015
29)O' Dea B, Larsen ME, Batterham PJ, et al:A linguistic analysis of suicide-related Twitter posts. Crisis 38:319, 2017
30)Wang T, Brede M, Ianni A, et al:Detecting and characterizing eating-disorder communities on social media. In:Proceedings of the Tenth ACM International Conference on Web Search and Data Mining(WSDM '17). Association for Computing Machinery, New York, pp91-100, 2017
31)Cohen S, Janicki-Deverts D, Miller GE:Psychological stress and disease. JAMA 298:1685-1687, 2007
32)Barnett I, Torous J, Staples P, et al:Relapse prediction in schizophrenia through digital phenotyping:a pilot study. Neuropsychopharmacol 43:1660-1666, 2018
33)Bohnert AS, Valenstein M, Bair MJ, et al:Association between opioid prescribing patterns and opioid overdose-related deaths. JAMA 30:1315-1321, 2011
34)Volkow ND, Collins FS:The role of science in addressing the opioid crisis. N Engl J Med 377:391-394, 2017
35)Wood E:Strategies for reducing opioid-overdose deaths-lessons from Canada. N Engl J Med 378:1565-1567, 2018
36)Nandakumar R, Gollakota S, Sunshine JE:Opioid overdose detection using smartphones. Sci Transl Med 11:eaau8914, 2019
37)Measham F, Brain K:‘Binge' drinking, British alcohol policy and the new culture of intoxication. Crime Media Cult 1:262-283, 2005
38)Bi Y, Lv M, Song C, et al:AutoDietary:a wearable acoustic sensor system for food intake recognition in daily life. IEEE Sensors Journal 16:806-816, 2015
39)Tung JY, Rose RV, Gammada E, et al:Measuring life space in older adults with mild-to-moderate Alzheimer's disease using mobile phone GPS. Gerontology 60:154-162, 2014
40)Liang Y, Zheng X, Zeng DD:A survey on big data-driven digital phenotyping of mental health. Inf Fusion 52:290-307, 2019
41)中外製薬:デジタルバイオマーカーへの取り組み. https://www.chugai-pharm.co.jp/profile/digital/digital_biomarkers.html/(2022年1月15日閲覧)
42)Faurholt-Jepsen M, Bauer M, Kessing LV:Smartphone-based objective monitoring in bipolar disorder:status and considerations. Int J Bipolar Disord 6:6, 2018
43)Pejovic V, Lathia N, Mascolo C:Mobile-based experience sampling for behaviour research. In:Tkalčič M, De Carolis B, de Gemmis M, et al ed. Emotions and Personality in Personalized Services. Springer, New York, pp141-161, 2016
44)Drake G, Csipke E, Wykes T:Assessing your mood online:acceptability and use of Moodscope. Psychol Med 43:1455-1464, 2013
45)Costa J, Adams AT, Jung MF, et al:EmotionCheck:leveraging bodily signals and false feedback to regulate our emotions. In:Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing(UbiComp '16). Association for Computing Machinery, New York, pp758-769, 2016
46)Wang R. Wang W, DaSilva A, et al:Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc ACM Interact Mob Wearable Ubiquitous Technol 2:1-26, 2018
47)Mikelsons G, Smith M, Mehrotra A, et al:Towards deep learning models for psychological state prediction using smartphone data:challenges and opportunities. arXiv preprint arXiv:1711.06350, 2017
48)デロイトトーマツ:約10年ぶりの改正—新しい個人情報保護法とその影響 前編. https://www2.deloitte.com/jp/ja/pages/technology/articles/cyb/newsletter-04-01.html(2022年1月15日閲覧)
49)個人情報保護委員会:匿名加工情報制度について. https://www.ppc.go.jp/personalinfo/tokumeikakouInfo/(2022年1月15日閲覧)