icon fsr

文献詳細

雑誌文献

胃と腸55巻1号

2020年01月発行

文献概要

今月の主題 早期胃癌の範囲診断up to date ノート

AIによる早期胃癌診断の最前線

著者: 金坂卓1 上堂文也1 石原立1

所属機関: 1大阪国際がんセンター消化管内科

ページ範囲:P.96 - P.99

文献購入ページに移動
要旨●近年,AI(artificial intelligence)による内視鏡診断が注目されている.AIによる胃癌の通常内視鏡診断では,存在診断と深達度診断の報告があり,前者は感度92.2%,陽性適中率30.6%である.後者はAUC(area under the curve)が0.851と超音波内視鏡検査よりも優れている可能性が示されている.一方,AIによる胃癌の拡大内視鏡診断では,小陥凹型胃病変の鑑別診断において,感度96.7%,特異度95%,正診率96.3%と報告されており,非熟練医と比較して感度,特異度,正診率は有意に高い.範囲診断能は,感度65.5%,特異度80.8%,正診率73.8%と報告されている.

参考文献

1)Kubota K, Kuroda J, Yoshida M, et al. Medical image analysis:computer-aided diagnosis of gastric cancer invasion on endoscopic images. Surg Endosc 26:1485-1489, 2012
2)Miyaki R, Yoshida S, Tanaka S, et al. Quantitative identification of mucosal gastric cancer under magnifying endoscopy with flexible spectral imaging color enhancement. J Gastroenterol Hepatol 28:841-847, 2013
3)Miyaki R, Yoshida S, Tanaka S, et al. A computer system to be used with laser-based endoscopy for quantitative diagnosis of early gastric cancer. J Clin Gastroenterol 49:108-115, 2015
4)Kanesaka T, Lee TC, Uedo N, et al. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest Endosc 87:1339-1344, 2018
5)Ali H, Yasmin M, Sharif M, et al. Computer assisted gastric abnormalities detection using hybrid texture descriptors for chromoendoscopy images. Comput Methods Programs Biomed 157:39-47, 2018
6)Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21:653-660, 2018
7)Zhu Y, Wang QC, Xu MD, et al. Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc 89:806-815, 2019
8)Li L, Chen Y, Shen Z, et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2019[Epub ahead of print]
9)Yoon HJ, Kim S, Kim JH, et al. A Lesion-Based Convolutional Neural Network Improves Endoscopic Detection and Depth Prediction of Early Gastric Cancer. J Clin Med 8:E1310, 2019
10)Yoshimizu S, Yamamoto Y, Horiuchi Y, et al. Diagnostic performance of routine esophagogastroduodenoscopy using magnifying endoscope with narrow-band imaging for gastric cancer. Dig Endosc 30:71-78, 2018
11)Yao K, Doyama H, Gotoda T, et al. Diagnostic performance and limitations of magnifying narrow-band imaging in screening endoscopy of early gastric cancer:a prospective multicenter feasibility study. Gastric Cancer 17:669-679, 2014

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1219

印刷版ISSN:0536-2180

雑誌購入ページに移動
icon up
あなたは医療従事者ですか?