1)Cosatto E, Laquerre PF, Malon C, et al. Automated gastric cancer diagnosis on H&E-stained sections ; ltraining a classifier on a large scale with multiple instance machine learning. Proc SPIE 8676:867605, 2013
2)Yoshida H, Shimazu T, Kiyuna T, et al. Automated histological classification of whole-slide images of gastric biopsy specimens. Gastric Cancer 21:249-257, 2018
3)Iizuka O, Kanavati F, Kato K, et al. Deep learning models for histopathological classification of gastric and colonic epithelial tumours. Sci Rep 10:1504, 2020
4)Song Z, Zou S, Zhou W, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat Commun 11:4294, 2020
5)日本胃癌学会(編).胃癌取扱い規約,第15版.金原出版,2017
6)Takahama S, Kurose Y, Mukuta Y, et al. Multi-stage pathological image classification using semantic segmentation. Proc ICCV 2019:10702-10711, 2019
7)Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch 475:131-138, 2019
8)Chattopadhyay A, Sarkar A, Howlader P, et al. Grad-CAM++:improved visual explanations for deep convolutional networks. https://arxiv.org/abs/1710.11063
9)Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks:visualising image classification models and saliency maps. https://arxiv.org/abs/1312.6034
10)Komura D, Fukuta K, Tominaga K, et al. Luigi:large-scale histopathological image retrieval system using deep texture representations. https://www.biorxiv.org/content/10.1101/345785v2.full.pdf
11)Ehteshami Bejnordi B, Veta M, van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318:2199-2210, 2017
12)Zakrzewski F, de Back W, Weigert M, et al. Automated detection of the HER2 gene amplification status in fluorescence in situ hybridization images for the diagnostics of cancer tissues. Sci Rep 9:8231, 2019
13)Balkenhol MCA, Tellez D, Vreuls W, et al. Deep learning assisted mitotic counting for breast cancer. Lab Invest 99:1596-1606, 2019
14)Courtiol P, Maussion C, Moarii M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat Med 25:1519-1525, 2019
15)Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 24:1559-1567, 2018