1)Nakagawa K, Ishihara R, Aoyama K, et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest Endosc 90:407-414, 2019
2)Ohmori M, Ishihara R, Aoyama K, et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc 91:301-309, 2020
3)Fukuda H, Ishihara R, Kato Y, et al. Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma(with video). Gastrointest Endosc 92:848-855, 2020
4)Shimamoto Y, Ishihara R, Kato Y, et al. Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. J Gastroenterol 55:1037-1045, 2020
5)Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol 36:131-136, 2021
6)Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018
7)Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med 371:2499-2509, 2014
8)Kodama M, Kakegawa T. Treatment of superficial cancer of the esophagus:a summary of responses to a questionnaire on superficial cancer of the esophagus in Japan. Surgery 123:432-439, 1998
9)Shimizu Y, Tsukagoshi H, Fujita M, et al. Long-term outcome after endoscopic mucosal resection in patients with esophageal squamous cell carcinoma invading the muscularis mucosae or deeper. Gastrointest Endosc 56:387-390, 2002
10)Katada C, Muto M, Momma K, et al. Clinical outcome after endoscopic mucosal resection for esophageal squamous cell carcinoma invading the muscularis mucosae—a multicenter retrospective cohort study. Endoscopy 39:779-783, 2007
11)Yamamoto S, Ishihara R, Motoori M, et al. Comparison between definitive chemoradiotherapy and esophagectomy in patients with clinical stage I esophageal squamous cell carcinoma. Am J Gastroenterol 106:1048-1054, 2011
12)Yamashina T, Ishihara R, Nagai K, et al. Long-term outcome and metastatic risk after endoscopic resection of superficial esophageal squamous cell carcinoma. Am J Gastroenterol 108:544-551, 2013
13)Muto M, Minashi K, Yano T, et al. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging:a multicenter randomized controlled trial. J Clin Oncol 28:1566-1572, 2010
14)Ishihara R, Takeuchi Y, Chatani R, et al. Prospective evaluation of narrow-band imaging endoscopy for screening of esophageal squamous mucosal high-grade neoplasia in experienced and less experienced endoscopists. Dis Esophagus 23:480-486, 2010
15)日本食道学会(編).食道癌診療ガイドライン2017年版.金原出版,2017
16)石原立,有馬美和子,飯塚敏郎,他.食道癌に対するESD/EMRガイドライン.Gastroenterol Endosc 62:221-271, 2020
17)Ishihara R, Matsuura N, Hanaoka N, et al. Endoscopic imaging modalities for diagnosing invasion depth of superficial esophageal squamous cell carcinoma:a systematic review and meta-analysis. BMC Gastroenterol 17:24, 2017
18)天野祐二,安積貴年,坪井優,他.本邦におけるBarrett食道癌の疫学—現況と展望.日消誌 112:219-231, 2015
19)Matsuno K, Ishihara R, Ohmori M, et al. Time trends in the incidence of esophageal adenocarcinoma, gastric adenocarcinoma, and superficial esophagogastric junction adenocarcinoma. J Gastroenterol 54:784-791, 2019
20)Amano Y, Kinoshita Y. Barrett esophagus:perspectives on its diagnosis and management in Asian populations. Gastroenterol Hepatol(N Y) 4:45-53, 2008
21)Hasegawa S, Yoshikawa T, Cho H, et al. Is adenocarcinoma of the esophagogastric junction different between Japan and western countries? The incidence and clinicopathological features at a Japanese high-volume cancer center. World J Surg 33:95-103, 2009
22)Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut 69:615-616, 2020
23)Ebigbo A, Mendel R, Probst A, et al. Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut 68:1143-1145, 2019
24)Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detection using deep learning methods. Int J Comput Assist Radiol Surg 14:611-621, 2019
25)de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in Patients with Barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology 158:915-929, 2020