1)Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy. Nature 405:417, 2000
2)Klang E. Deep learning and medical imaging. J Thorac Dis 10:1325-1328, 2018
3)Spyridonos P, Vilariño F, VitriàJ, et al. Anisotropic feature extraction from endoluminal images for detection of intestinal contractions. In Larsen R, Nielsen M, Sporring J(eds). Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006. Springer, Berlin, pp 161-168, 2006
4)Fu Y, Zhang W, Mandal M, et al. Computer-aided bleeding detection in WCE video. IEEE J Biomed Health Inform 18:636-642, 2014
5)Li B, Meng MQ-H. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Trans Inf Technol Biomed 16:323-329, 2012
6)Han S, Fahed J, Cave DR. Suspected blood indicator to identify active gastrointestinal bleeding:a prospective validation. Gastroenterology Res 11:106-111, 2018
7)Saurin JC, Lapalus MG, Cholet F, et al. Can we shorten the small-bowel capsule reading time with the “Quick-view” image detection system? Dig Liver Dis 44:477-481, 2012
8)Aoki T, Yamada A, Aoyama K, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc 89:357-363, 2019
9)Leenhardt R, Vasseur P, Li C, et al. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc 89:189-194, 2019
10)Tsuboi A, Oka S, Aoyama K, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig Endosc 32:382-390, 2020
11)Aoki T, Yamada A, Kato Y, et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 35:1196-1200, 2020
12)Saito H, Aoki T, Aoyama K, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc 92:144-151, 2020
13)Klang E, Grinman A, Soffer S, et al. Automated detection of Crohn's disease intestinal strictures on capsule endoscopy images using deep neural networks. J Crohns Colitis 2020[Epub ahead of print]
14)Otani K, Nakada A, Kurose Y, et al. Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 52:786-791, 2020
15)Aoki T, Yamada A, Kato Y, et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system:a multicenter study. Gastrointest Endosc 93:165-173, 2021
16)Ding Z, Shi H, Zhang H, et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology 157:1044-1054, 2019
17)Koulaouzidis A, Iakovidis DK, Yung DE, et al. KID Project:an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc Int Open 5:E477-483, 2017
18)Aoki T, Yamada A, Aoyama K, et al. Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading. Dig Endosc 32:585-591, 2020