1)Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209-249, 2021
2)Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 329:1977-1981, 1993
3)Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 366:687-696, 2012
4)Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med 362:1795-1803, 2010
5)Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med 370:1298-1306, 2014
6)Ahn SB, Han DS, Bae JH, et al. The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut Liver 6:64-70, 2012
7)Samadder NJ, Curtin K, Tuohy TM, et al. Characteristics of missed or interval colorectal cancer and patient survival:a population-based study. Gastroenterology 146:950-960, 2014
8)Misawa M, Kudo SE, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy:initial experience. Gastroenterology 154:2027-2029, 2018
9)Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155:1069-1078, e8, 2018
10)Yamada M, Saito Y, Imaoka H, et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep 9:14465, 2019
11)Ozawa T, Ishihara S, Fujishiro M, et al. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Therap Adv Gastroenterol 13:1756284820910659, 2020
12)Wang P, Xiao X, Brown JRG, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng 2:741-748, 2018
13)Becq A, Chandnani M, Bharadwaj S, et al. Effectiveness of a deep-learning polyp detection system in prospectively collected colonoscopy videos with variable bowel preparation quality. J Clin Gastroenterol 54:554-557, 2020
14)Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates:a prospective randomised controlled study. Gut 68:1813-1819, 2019
15)Wang P, Liu X, Berzin TM, et al. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy(CADe-DB trial):a double-blind randomised study. Lancet Gastroenterol Hepatol 5:343-351, 2020
16)Luo Y, Zhang Y, Liu M, et al. Artificial intelligence-assisted colonoscopy for detection of colon polyps:a prospective, randomized cohort study. J Gastrointest Surg 25:2011-2018, 2021
17)Repici A, Spadaccini M, Antonelli G, et al. Artificial intelligence and colonoscopy experience:lessons from two randomised trials. Gut 71:757-765, 2021
18)Xu L, He X, Zhou J, et al. Artificial intelligence-assisted colonoscopy:A prospective, multicenter, randomized controlled trial of polyp detection. Cancer Med 10:7184-7193, 2021
19)Wang A, Mo J, Zhong C, et al. Artificial intelligence-assisted detection and classification of colorectal polyps under colonoscopy:a systematic review and meta-analysis. Ann Transl Med 9:1662, 2021
20)Barua I, Vinsard DG, Jodal HC, et al. Artificial intelligence for polyp detection during colonoscopy:a systematic review and meta-analysis. Endoscopy 53:277-284, 2021
21)Zhang Y, Zhang X, Wu Q, et al. Artificial intelligence-aided colonoscopy for polyp detection:a systematic review and meta-analysis of randomized clinical trials. J Laparoendosc Adv Surg Tech A 31:1143-1149, 2021
22)Huang D, Shen J, Hong J, et al. Effect of artificial intelligence-aided colonoscopy for adenoma and polyp detection:a meta-analysis of randomized clinical trials. Int J Colorectal Dis 37:495-506, 2022
23)Zorzi M, Hassan C, Battagello J, et al. Adenoma detection by Endocuff-assisted versus standard colonoscopy in an organized screening program:the“ItaVision”randomized controlled trial. Endoscopy 54:138-147, 2022
24)Su JR, Li Z, Shao XJ, et al. Impact of a real-time automatic quality control system on colorectal polyp and adenoma detection:a prospective randomized controlled study(with videos). Gastrointest Endosc 91:415-424, 2020
25)Gong D, Wu L, Zhang J, et al. Detection of colorectal adenomas with a real-time computer-aided system(ENDOANGEL):a randomised controlled study. Lancet Gastroenterol Hepatol 5:352-361, 2020
26)Saito H, Tanimoto T, Ozawa T, et al. Automatic anatomical classification of colonoscopic images using deep convolutional neural networks. Gastroenterol Rep(Oxf) 9:226-233, 2020
27)オリンパス株式会社.EndoBRAIN. https://www.olympus-medical.jp/gastroenterology/ai/endobrain(2022年7月5日閲覧)
28)Weigt J, Repici A, Antonelli G, et al. Performance of a new integrated computer-assisted system(CADe/CADx)for detection and characterization of colorectal neoplasia. Endoscopy 54:180-184, 2022
29)FDA. FDA authorizes marketing of first device that uses artificial intelligence to help detect potential signs of colon cancer. https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-device-uses-artificial-intelligence-help-detect-potential-signs-colon
30)Wision AI. https://www.wision.com/(2022年7月5日閲覧)
31)Mori Y, Kudo SE, East JE, et al. Cost savings in colonoscopy with artificial intelligence-aided polyp diagnosis:an add-on analysis of a clinical trial(with video). Gastrointest Endosc 92:905-911, 2020