1)国立がん研究センターがん予防・検診研究センター.有効性評価に基づく胃がん検診ガイドライン2014年度版.2015
2)細川治,新保卓郎,松田一夫,他.任意型内視鏡検診での胃がん死亡率減少効果.日消がん検診誌 49:401-407, 2011
3)Menon S, Trudgill N. How commonly is upper gastrointestinal cancer missed at endoscopy? A meta-analysis. Endosc Int Open 2:E46-50, 2014
4)Hosokawa O, Hattori M, Douden K, et al. Difference in accuracy between gastroscopy and colonoscopy for detection of cancer. Hepatogastroenterology 54:442-444, 2007
5)Yalamarthi S, Witherspoon P, McCole D, et al. Missed diagnoses in patients with upper gastrointestinal cancers. Endoscopy 36:874-879, 2004
6)Zhang Q, Chen ZY, Chen CD, et al. Training in early gastric cancer diagnosis improves the detection rate of early gastric cancer:an observational study in China. Medicine(Baltimore) 94:e384, 2015
7)Yamazato T, Oyama T, Yoshida T, et al. Two years' intensive training in endoscopic diagnosis facilitates detection of early gastric cancer. Intern Med 51:1461-1465, 2012
8)Yoshimizu S, Hirasawa T, Horiuchi Y, et al. Differences in upper gastrointestinal neoplasm detection rates based on inspection time and esophagogastroduodenoscopy training. Endosc Int Open 6:E1190-1197, 2018
9)Yao K, Uedo N, Kamada T, et al. Guidelines for endoscopic diagnosis of early gastric cancer. Dig Endosc 32:663-698, 2020
10)Takiyama H, Ozawa T, Ishihara S, et al. Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Sci Rep 8:7497, 2018
11)Wu L, Zhou W, Wan X, et al. A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 51:522-531, 2019
12)Wu L, Zhang J, Zhou W, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut 68:2161-2169, 2019
13)Wu L, He X, Liu M, et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer:a randomized controlled trial. Endoscopy 53:1199-1207, 2021
14)Chen D, Wu L, Li Y, et al. Comparing blind spots of unsedated ultrafine, sedated, and unsedated conventional gastroscopy with and without artificial intelligence:a prospective, single-blind, 3-parallel-group, randomized, single-center trial. Gastrointest Endosc 91:332-339, 2020
15)Kato S, Matsukura N, Tsukada K, et al. Helicobacter pylori infection-negative gastric cancer in Japanese hospital patients:incidence and pathological characteristics. Cancer Sci 98:790-794, 2007
16)Yoon H, Kim N, Lee HS, et al. Helicobacter pylori-negative gastric cancer in South Korea:incidence and clinicopathologic characteristics. Helicobacter 16:382-388, 2011
17)春間賢(監).胃炎の京都分類,改訂第2版.日本メディカルセンター,2018
18)Watanabe K, Nagata N, Shimbo T, et al. Accuracy of endoscopic diagnosis of Helicobacter pylori infection according to level of endoscopic experience and the effect of training. BMC Gastroenterol 13:128, 2013
19)Shichijo S, Nomura S, Aoyama K, et al. Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images. EBioMedicine 25:106-111, 2017
20)Shichijo S, Endo Y, Aoyama K, et al. Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images. Scand J Gastroenterol 54:158-163, 2019
21)Nakashima H, Kawahira H, Kawachi H, et al. Endoscopic three-categorical diagnosis of Helicobacter pylori infection using linked color imaging and deep learning:a single-center prospective study(with video). Gastric Cancer 23:1033-1040, 2020
22)Ikenoyama Y, Hirasawa T, Ishioka M, et al. Detecting early gastric cancer:Comparison between the diagnostic ability of convolutional neural networks and endoscopists. Dig Endosc 33:141-150, 2021
23)Hirasawa T, Aoyama K, Tanimoto T, et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21:653-660, 2018
24)Ishioka M, Hirasawa T, Tada T. Detecting gastric cancer from video images using convolutional neural networks. Dig Endosc 31:e34-35, 2019
25)Yoon HJ, Kim S, Kim JH, et al. A lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer. J Clin Med 8:1310, 2019
26)Tang D, Wang L, Ling T, et al. Development and validation of a real-time artificial intelligence-assisted system for detecting early gastric cancer:A multicentre retrospective diagnostic study. EBioMedicine 62:103146, 2020
27)Namikawa K, Hirasawa T, Nakano K, et al. Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers:comparison between the original and newly developed systems. Endoscopy 52:1077-1083, 2020
28)Ezoe Y, Muto M, Uedo N, et al. Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology 141:2017-2025, 2011
29)Yao K, Doyama H, Gotoda T, et al. Diagnostic performance and limitations of magnifying narrow-band imaging in screening endoscopy of early gastric cancer:a prospective multicenter feasibility study. Gastric Cancer 17:669-679, 2014
30)Horiuchi Y, Aoyama K, Tokai Y, et al. Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging. Dig Dis Sci 65:1355-1363, 2020
31)Ueyama H, Kato Y, Akazawa Y, et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. J Gastroenterol Hepatol 36:482-489, 2021
32)Horiuchi Y, Hirasawa T, Ishizuka N, et al. Performance of a computer-aided diagnosis system in diagnosing early gastric cancer using magnifying endoscopy videos with narrow-band imaging(with videos). Gastrointest Endosc 92:856-865, 2020
33)Ling T, Wu L, Fu Y, et al. A deep learning-based system for identifying differentiation status and delineating the margins of early gastric cancer in magnifying narrow-band imaging endoscopy. Endoscopy 53:469-477, 2021
34)Hu H, Gong L, Dong D, et al. Identifying early gastric cancer under magnifying narrow-band images with deep learning:a multicenter study. Gastrointest Endosc 93:1333-1341, 2021
35)Wu L, Wang J, He X, et al. Deep learning system compared with expert endoscopists in predicting early gastric cancer and its invasion depth and differentiation status(with videos). Gastrointest Endosc 95:92-104, 2022
36)日本消化器がん検診学会対策型検診のための胃内視鏡検診マニュアル作成委員会(編).対策型検診のための胃内視鏡検診マニュアル.南江堂,2017
37)Oura H, Matsumura T, Fujie M, et al. Development and evaluation of a double-check support system using artificial intelligence in endoscopic screening for gastric cancer. Gastric Cancer 25:392-400, 2022
38)厚生労働省.プログラムの医療機器への該当性に関する基本的な考え方について(薬食監麻発1114第5号 平成26年11月14日付).2014
39)厚生労働省.人工知能(AI)を用いた診断,治療等の支援を行うプログラムの利用と医師法第17条の規定との関係について(医政医発1219第1号 平成30年12月19日付).2018