1)Nakase H, Uchino M, Shinzaki S, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020. J Gastroenterol 56:489-526, 2021
2)Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50:992-1006, 2019
3)Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979-986, 2015
4)Moschen AR, Tilg H, Raine T. IL-12, IL-23 and IL-17 in IBD:immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol 16:185-196, 2019
5)Nakase H, Sato N, Mizuno N, et al. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun Rev 21:103017, 2022
6)Baumgart DC, Le Berre C. Newer biologic and small-molecule therapies for inflammatory bowel disease. N Engl J Med 385:1302-1315, 2021
7)Schmidt C, Grunert PC, Stallmach A. An update for pharmacologists on new treatment options for inflammatory bowel disease:the Clinicians' perspective. Front Pharmacol 12:655054, 2021
8)Pickert G, Neufert C, Leppkes M, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206:1465-1472, 2009
9)Lee JS, Tato CM, Joyce-Shaikh B, et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43:727-738, 2015
10)Maxwell JR, Zhang Y, Brown WA, et al. Differential roles for interleukin-23 and interleukin-17 in intestinal immunoregulation. Immunity 43:739-750, 2015
11)Shih VFS, Cox J, Kljavin NM, et al. Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota. Proc Natl Acad Sci USA 111:13942-13947, 2014
12)Grizotte-Lake M, Zhong G, Duncan K, et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49:1103-1115, e6, 2018
13)Schiering C, Wincent E, Metidji A, et al. Feedback control of AHR signalling regulates intestinal immunity. Nature 542:242-245, 2017
14)Kole A, He J, Rivollier A, et al. Type I IFNs regulate effector and regulatory T cell accumulation and anti-inflammatory cytokine production during T cell-mediated colitis. J Immunol 191:2771-2779, 2013
15)Cosín-Roger J, Ortiz-MasiáD, Calatayud S, et al. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol 9:986-998, 2016
16)Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170-181, 2010
17)Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in T reg cell function. Nat Immunol 17:1322-1333, 2016
18)Schiering C, Krausgruber T, Chomka A, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:564-568, 2014
19)Macpherson AJ, Yilmaz B, Limenitakis JP, et al. IgA function in relation to the intestinal microbiota. Annu Rev Immunol 36:359-381, 2018
20)Drury B, Hardisty G, Gray RD, et al. Neutrophil extracellular traps in inflammatory bowel disease:pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol 12:321-333, 2021
21)Bain CC, Bravo-Blas A, Scott CL, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929-937, 2014
22)Zigmond E, Varol C, Farache J, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37:1076-1090, 2012
23)Yao H, Tang G. Macrophages in intestinal fibrosis and regression. Cell Immunol 381:104614, 2022
24)Chieppa M, Rescigno M, Huang AYC, et al. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841-2852, 2006
25)Hart AL, Al-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 129:50-65, 2005
26)Hue S, Ahern P, Buonocore S, et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203:2473-2483, 2006
27)Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427-434, 2007
28)Forkel M, van Tol S, Höög C, et al. Distinct alterations in the composition of mucosal innate lymphoid cells in newly diagnosed and established Crohn's disease and ulcerative colitis. J Crohns Colitis 13:67-78, 2019
29)Gomez-Bris R, Saez A, Herrero-Fernandez B, et al. CD4 T-Cell Subsets and the pathophysiology of inflammatory bowel disease. Int J Mol Sci 24:2696, 2023
30)Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol 20:970-979, 2019
31)Arnold IC, Mathisen S, Schulthess J, et al. CD11c(+) monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunol 9:352-363, 2016
32)Stockinger B, Omenetti S. The dichotomous nature of T helper 17 cells. Nat Rev Immunol 17:535-544, 2017
33)de Souza HSP, Fiocchi C. Immunopathogenesis of IBD:current state of the art. Nat Rev Gastroenterol Hepatol 13:13-27, 2016
34)Shohan M, Sabzevary-Ghahfarokhi M, Bagheri N, et al. Intensified Th9 Response is associated with the immunopathogenesis of active ulcerative colitis. Immunol Invest 47:700-711, 2018
35)Wang X, Zhu Y, Zhang M, et al. Ulcerative colitis is characterized by a decrease in regulatory B Cells. J Crohns Colitis 10:1212-1223, 2016
36)Mizoguchi E, Mizoguchi A, Bhan AK. Role of cytokines in the early stages of chronic colitis in TCR alpha-mutant mice. Lab Invest 76:385-397, 1997
37)Mizoguchi A, Mizoguchi E, Chiba C, et al. Cytokine imbalance and autoantibody production in T cell receptor-alpha mutant mice with inflammatory bowel disease. J Exp Med 183:847-856, 1996
38)Spencer DM, Veldman GM, Banerjee S, et al. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology 122:94-105, 2002
39)Bamias G, Martin C, Mishina M, et al. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology 128:654-666, 2005
40)Collett A, Higgs NB, Gironella M, et al. Early molecular and functional changes in colonic epithelium that precede increased gut permeability during colitis development in mdr1a(-/-)mice. Inflamm Bowel Dis 14:620-631, 2008
41)Alex P, Zachos NC, Nguyen T, et al. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm Bowel Dis 15:341-352, 2009
42)Boehm F, Martin M, Kesselring R, et al. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation. BMC Gastroenterol 12:97, 2012
43)Eftychi C, Schwarzer R, Vlantis K, et al. Temporally distinct functions of the cytokines IL-12 and IL-23 drive chronic colon inflammation in response to intestinal barrier impairment. Immunity 51:367-380, e4, 2019
44)Mavroudis G, Magnusson MK, Isaksson S, et al. Mucosal and systemic immune profiles differ during early and late phases of the disease in patients with active ulcerative colitis. J Crohns Colitis 13:1450-1458, 2019
45)Lees CW, Barrett JC, Parkes M, et al. New IBD genetics:common pathways with other diseases. Gut 60:1739-1753, 2011
46)Fuyuno Y, Yamazaki K, Takahashi A, et al. Genetic characteristics of inflammatory bowel disease in a Japanese population. J Gastroenterol 51:672-681, 2016
47)Leppkes M, Neurath MF. Cytokines in inflammatory bowel diseases - update 2020. Pharmacol Res 158:104835, 2020
48)Butera A, Di Paola M, Vitali F, et al. IL-13 mRNA tissue content identifies two subsets of adult ulcerative colitis patients with different clinical and mucosa-associated microbiota profiles. J Crohns Colitis 14:369-380, 2020
49)West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 23:579-589, 2017
50)Bertani L, Baglietto L, Antonioli L, et al. Assessment of serum cytokines predicts clinical and endoscopic outcomes to vedolizumab in ulcerative colitis patients. Br J Clin Pharmacol 86:1296-1305, 2020