1) 蜂谷裕道.骨癒合の基礎と臨床.自家骨以外の材料.同種骨を中心に.脊椎脊髄2016;29:641-6.
2) Kaiser MG, Groff MW, Resnick DK, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 16:bone graft extenders and substitutes as an adjunct for lumbar fusion. J Neurosurg Spine 2014;21:106-32.
3) Dai LY, Jiang LS. single-level instrumented posterolateral fusion of lumbar spine with beta-tricalcium phosphate versus autograft:a prospective, randomized study with 3-year follow-up. Spine 2008;33:1299-304.
4) 矢野経済研究所.2017年版メディカルバイオニクス(人工臓器)市場の中期予測と参入企業の徹底分析.https://www.yano.co.jp/market_reports/C59109000.
5) Sugawara T, Itoh Y, Mizoi K, et al. β-Tricalcium phosphate promotes bony fusion after anterior cervical discectomy and fusion using titanium cages. Spine (Phila Pa 1976) 2011;36:E1509-14. doi:10.1097/BRS.ob013e31820e60d9.
6) Zadegan SA, Abedi A, Jazayeri SB, et al. Clinical application of ceramics in anterior cervical discectomy and fusion:a review and update. Global Spine J 2017;7:343-9.
7) Cho DY, Lee XY, Sheu PC, et al. Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol 2005;63:497-503.
8) McConnell JR, Freeman BJ, Debnath UK, et al. A prospective randomized comparison of coralline hydroxyapatite with autograft in cervical interbody fusion. Spine (Phila Pa 1976) 2003;28:317-23.
9) Shiban E, Gapon K, Wostrack M, et al. Clinical and radiological outcome after anterior cervical discectomy and fusion with stand-alone empty polyetheretherketone (PEEK) cages. Acta Neurochir (Wien) 2016;158:349-55.
10) Feng SW, Chang MC, Chou PH, et al. Implantation of an empty polyetheretherketone cage in anterior cervical discectomy and fusion:a prospective randomised controlled study with 2 years follow-up. Eur Spine J 2018;27:1358-64.
11) Hirano Y, Ohara Y, Mizuno J, et al. History and evolution of laminoplasty. Neurosurg Clin N Am 2018;29:107-13.
12) Kim H, Lee CK, Chang BS, et al. The efficacy of porous hydroxyapatite bone chip as an extender of local bone graft in posterior lumbar interbody fusion. Eur Spine J 2012;21:1324-30.
13) Chang KY, Hsu WK. Spinal biologics in minimally invasive lumbar surgery. Minim Invasive Surg 2018;2018:5230350. DOI:10.1155/2018/5230350.
14) Nemoto O, Asazuma T, Yato T, et al. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J 2014;23:2150-5.
15) Ohtori S, Mannoji C, Orita S, et al. Mini-open anterior retroperitoneal lumbar interbody fusion:oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J 2015;9:565-72.
16) Berjano P, Langella F, Lamartina C, et al. Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J 2015;24:369-71.
17) Umebayashi T, Ohta K, Kumano K, et al. Fusion rate following lateral lumbar interbody fusion using porous hydroxyapatite/collagen composite at 1-year follow-up. J Spine Res 2017;8:1299-302.
18) Kumagai H, Abe T, Yamazaki M, et al. Unidirectional porous β-tricalcium phosphate induces bony fusion in lateral lumbar interbody fusion. J Clin Neurosci 2018. DOI:10.1016/j.jocn.2018.09.004.
19) Parker RM, Malham GM. Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2:a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Eur Spine J 2017;26:754-63.
20) Rodgers WB, Gerber EJ, Rodgers JA. Clinical and radiographic outcomes of extreme lateral approach to interbody fusion with β-tricalcium phosphate and hydroxyapatite composite for lumbar degenerative conditions. Int J Spine Surg 2012;6:24-8.
21) Lerner T, Bullmann V, Liljenqvist U, et al. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J 2009;18:170-9.
22) Delécrin J, Takahashi S, Passuti N, et al. A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis:a prospective, randomized study. Spine (Phila Pa 1976) 2000;25:563-9.
23) Theologis AA, Tabaraee E, Diab M, et al. Type of bone graft or substitute does not affect outcome of spine fusion with instrumentation for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2015;40:1345-51.
24) Crostelli M, Mazza O, Iorio C, et al. Adolescent idiopathic scoliosis correction by instrumented vertebral arthrodesis with autologous bone graft from local harvesting without bone substitute use:results with mean 3 year follow-up. Eur Spine J 2018;27 Suppl 2:175-81.
25) Pesenti S, Ghailane S, Jouve JL, et al. Bone substitutes in adolescent idiopathic scoliosis surgery using sublaminar bands:is it useful? A case-control study. Int Orthop 2017;41:2083-90.
26) Masala S, Taglieri A, Simonetti G, st al. Thoraco-lumbar traumatic vertebral fractures augmentation by osteo-conductive and osteo-inductive bone substitute containing strontium-hydroxyapatite:our experience. Neuroradiology 2014;56:459-66.
27) Maestretti G, Sutter P, Gautier E, et al. A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures:10-year results. Eur Spine J 2014;23:1354-60.
28) Verlaan JJ, Somers I, Oner FC, et al. Clinical and radiological results 6 years after treatment of traumatic thoracolumbar burst fractures with pedicle screw instrumentation and balloon assisted endplate reduction. Spine J 2015;15:1172-8.
29) Rahamimov N, Mulla H, Freiman S, et al. Percutaneous augmented instrumentation of unstable thoracolumbar burst fractures. Eur Spine J 2012;21:850-4.
30) Piazzolla A, Solarino G, Moretti B, et al. The pedicle instrumentation and percutaneous elevation (Pi.Pe):a new cementless surgical technique in type A post-traumatic vertebral fractures. Eur Spine J 2018;27 Suppl 2:182-9.
31) Vaccaro AR, Schroeder GD, Kepler CK, et al. The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur Spine J 2016;25:1087-94. Epub 2015 May 8.
32) Okuda T, Ioku K, Ikeda T, et al. The effect of the microstructure of β-tricalcium phosphate on the metabolism of subsequently formed bone tissue. Biomaterials 2007;28:2612-21.
33) Schroeder GD, Hsu WK, Kepler CK, et al. Use of recombinant human bone morphogenetic protein-2 in the treatment of degenerative spondylolisthesis. Spine (Phila Pa 1976) 2016;41:445-9.
34) Smith KA, Russo GS, Arnold PM, et al. Scientific, clinical, regulatory, and economic aspects of choosing bone graft/biological options in spine surgery. Neurosurgery 2018. doi:10.1093/neuros/nyy322.
35) Ioku K, Okuda T, Ikeda T, et al. Porous ceramics of β-Tricalcium phosphate composed of rod-shaped particle. Arch Bioceram Res 2004;4:121-4.
36) Okuda T, Ioku K, Ikeda T, et al. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials 2008;29:2719-28.
37) Gonda Y, Ioku K, Shibata Y, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials 2009;30:4390-400.
38) Morishita K, Tatsukawa E, Ikeda T, et al. Diversity of multinucleated giant cells by microstructures of hydroxyapatite and plasma components in extraskeletal implantation model. Acta Biomater 2016;39:180-91.