1) Ahmed AM, Burke DL, Duncan NA, et al. Ligament tension patterns in the flexed knee in combined passive anterior tibial translation and axial rotation. J Orthop Res 1992;10:854-67.
2) Markolf KL, Gorek JF, Kabo JM, et al. Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 1990;72:557-67.
3) Takai S, Woo SL-Y, Livesay GA, et al. Determination of the in-situ loads on the human anterior cruciate ligament. J Orthop Res 1993;11:686-95.
4) Girgis FG, Marshall JL, Monajem ARS. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop 1975;106:216-31.
5) Norwood LA, Cross MJ. Anterior cruciate ligament;Functional anatomy of its bundle in rotatory instabilities. Am J Sports Med 1979;7:23-6.
6) Fujie H, Mabuchi K, Woo SL-Y, et al. The use of robotics technology to study human joint kinematics:A new methodology. J Biomech Eng 1993;115:211-7.
7) Fujie H, Livesay GA, Woo SL-Y, et al. The use of a universal force-moment sensor to determine in-situ forces in ligaments:A new methodology. J Biomech Eng 1995;117:1-7.
8) Sakane M, Fox RJ, Woo SL-Y, et al. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res 1997;15:285-93.
9) Mae T, Shino K, Miyama T, et al, Single- versus two-femoral socket anterior cruciate ligament reconstruction technique:Biomechanical analysis using a robotic simulator. Arthroscopy 2001;17:708-16.
10) Fujie H, Otsubo H, Fukano S, et al. Mechanical functions of the three bundles consisting of the human anterior cruciate ligament, Knee Surg Sports Traumatol Arthrosc 2011;19:S47-53.
11) Butler DL, Guan Y, Kay MD, et al. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 1992;25:511-8.
12) 山川学志.前十字靱帯再建術に関する生体力学的検討:移植腱の変形計測と機能評価.首都大学東京学位論文.2017.
13) 山川学志,Debski ED,藤江裕道.ヒト膝前方力荷重時における前十字靱帯のひずみ分布解析.臨床バイオメカニクス2017;38:61-7.
14) Yamakawa S, Pfeiffer TR, Debski RE, et al. Tensioning pattern of the anterior cruciate ligament in response to tibial anterior loading. Proceedings of the Orthopaedic Research Society Annual Meeting, March 19-22, 2017;San Diego, USA.
15) Yamakawa S, Debski RE, Fujie H, Three dimensional strain analysis of the human anterior cruciate ligament during anterior tibial translation. Proceedings of the Summer Biomechanics, Bioengineering, and Biotransport Conference 2017, June 21-24, 2017;Tucson, USA.
16) Fujie H, Sekito T, Orita A. A novel robotic system for joint biomechanical tests:Application to the human knee joint. J Biomech Eng 2004;126:54-61.
17) Kiapour AM, Wordeman SC, Paterno MV, et al. Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing. Am J Sports Med 2014;42:312-19.
18) Yamamoto K, Hirokawa S, Kawada T. Strain distribution in the ligaments using photoelasticity:A direct application to the human ACL. Med Eng Phys 1998;20:161-68.
19) Mochizuki T, Fujishiro H, Nimura A, et al. Anatomic and histologic analysis of the mid-substance and fan-like extension fibers of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthosc 2014;22:336-44.
20) Kawaguchi Y, Kondo E, Takeda R, et al. The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 2015;31:435-44.
21) Nawabi DH, Tucker S, Schafer KA, et al. ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med 2016;44:2563-71.