1) Gornitzky AL, Lott A, Yellin JL, et al. Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes:a systematic review and meta-analysis. Am J Sports Med 2016;44(10):2716-23.
2) Beynnon BD, Vacek PM, Newell MK, et al. The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury. Am J Sports Med 2014;42(8):1806-12.
3) Prodromos CC, Han Y, Rogowski J, et al. A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 2007;23(12):1320-25. e6.
4) Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer:a 13-year review. Am J Sports Med 2005;33(4):524-30.
5) Konopka JA, DeBaun MR, Chang W, et al. The intracellular effect of relaxin on female anterior cruciate ligament cells. Am J Sports Med 2016;44(9):2384-92.
6) Dragoo JL, Castillo TN, Braun HJ, et al. Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med 2011;39(10):2175-80.
7) Weinberg DS, Williamson DF, Gebhart JJ, et al. Differences in medial and lateral posterior tibial slope:an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 2017;45(1):106-13.
8) Hashemi J, Chandrashekar N, Mansouri H, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes:new risk factors for anterior cruciate ligament injuries. Am J Sports Med 2010;38(1):54-62.
9) Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes:a prospective study. Am J Sports Med 2005;33(4):492-501.
10) Carson DW, Ford KR. Sex differences in knee abduction during landing:a systematic review. Sports Health 2011;3(4):373-82.
11) Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior cruciate ligament injuries:knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med 2010;38(11):2218-25.
12) Sugimoto D, Myer GD, Foss KD, et al. Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females:meta-analysis and subgroup analysis. Br J Sports Med 2015;49(5):282-9.
13) Khamis S, Yizhar Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture 2007;25(1):127-34.
14) Ito K, Hosoda K, Shimizu M, et al. Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy. R Soc Open Sci 2017;4(10):171086.
15) Fukano M, Fukubayashi T, Banks SA. Sex differences in three-dimensional talocrural and subtalar joint kinematics during stance phase in healthy young adults. Hum Mov Sci 2018;61:117-25.
16) Nozaki S, Watanabe K, Kamiya T, et al. Morphological variations of the human talus investigated using three-dimensional geometric morphometrics. Clin Anat 2020. doi:10.1002/ca.23588.
17) Nozaki S, Watanabe K, Kamiya T, et al. Sex- and age-related morphological variations in the talar articular surfaces of the calcaneus. Ann Anat 2020;229:151468.
18) Nozaki S, Watanabe K, Kamiya T, et al. Three-dimensional morphological variations of the human calcaneus investigated using geometric morphometrics. Clin Anat 2019;33(5):751-8.