icon fsr

文献詳細

雑誌文献

臨床整形外科55巻12号

2020年12月発行

文献概要

整形外科基礎

変形性関節症の骨リモデリングに対するNSAIDsの疾患修飾作用

著者: 金本隆司1 山根ひとみ2 比嘉辰伍2 中田研1

所属機関: 1大阪大学大学院スポーツ医学 2ファイザー株式会社メディカル・アフェアーズ統括部

ページ範囲:P.1339 - P.1345

文献購入ページに移動
 変形性関節症(OA)は,軟骨変性・喪失,滑膜炎,軟骨下骨の硬化,疼痛などを伴う関節障害であり,OA初期においては軟骨変性に先行して軟骨下骨での骨量減少が起こる.OA治療に使用される非ステロイド性抗炎症薬(NSAIDs)では,疼痛などの症候に対する抗炎症作用とは異なる疾患修飾作用が近年注目されている.本総説ではOA初期の病態において重要な役割を果たす軟骨下骨の骨リモデリングに対するNSAIDsの疾患修飾作用に着目し,2010年以降の報告を中心に,骨芽細胞・破骨細胞の分化誘導・形成に対するNSAIDsの抑制作用を明らかにした.

参考文献

1) Wenham CYJ, Conaghan PG. The role of synovitis in osteoarthritis. Ther Adv Musculoskel Dis 2010;2(6):349-59.
2) Lajeunesse D, Massicotte F, Pelletier JP, et al. Subchondral bone sclerosis in osteoarthritis:not just an innocent bystander. Mod Rheumatol 2003;13(1):7-14.
3) Wieland HA, Michaelis M, Kirschbaum BJ, et al. Osteoarthritis-an untreatable disease? Nat Rev Drug Discov 2005;4(4):331-44.
4) Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986;213:34-40.
5) Huebner JL, Hanes MA, Beekman B, et al. A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. Osteoarthritis Cartilage 2002;10(10):758-67.
6) Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development:a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis. Arthritis Rheum 2007;56(10):3366-74.
7) Pickarski M, Hayami T, Zhuo Y, et al. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. BMC Musculoskelet Disord 2011;12(1):197.
8) Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012;8(11):665-73.
9) Oo WM, Yu SP, Daniel MS, et al. Disease-modifying drugs in osteoarthritis:current understanding and future therapeutics. Expert Opin Emerg Drugs 2018;23(4):331-47.
10) Zweers MC, de Boer TN, van Roon J, et al. Celecoxib:considerations regarding its potential disease-modifying properties in osteoarthritis. Arthritis Res Ther 2011;13(5):239.
11) Nakata K, Hanai T, Take Y, et al. Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis:a systematic review. Osteoarthritis Cartilage 2018;26(10):1263-73.
12) Komori T. Regulation of bone development and maintenance by Runx2.Front Biosci 2008;13(3):898-903.
13) Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999;20(3):345-57.
14) Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone:bad cop, good cop? Trends Endocrinol Metab 2010;21(5):294-301.
15) Kwan Tat S, Amiable N, Pelletier JP, et al. Modulation of OPG, RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology (Oxford) 2009;48(12):1482-90.
16) Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet 2003;4(8):638-49.
17) Walsh MC, Kim N, Kadono Y, et al. Osteoimmunology:interplay between the immune system and bone metabolism. Annu Rev Immunol 2006;24:33-63.
18) Yoshida K, Oida H, Kobayashi T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci U S A 2002;99(7):4580-5.
signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-κB (RANK) ligand/RANK system. Endocrinology 2005;146(4):1991-8.
20) Kellinsalmi M, Parikka V, Risteli J, et al. Inhibition of cyclooxygenase-2 down-regulates osteoclast and osteoblast differentiation and favours adipocyte formation in vitro. Eur J Pharmacol 2007;572(2-3):102-10.
21) Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 2012;18(7):1095-101.
22) Hutchison MR, White PC. Prostacyclin regulates bone growth via the Epac/Rap1 pathway. Endocrinology 2015;156(2):499-510.
23) Schwarting T, Pretzsch S, Debus F, et al. The effect of cyclooxygenase inhibition on tendon-bone healing in an in vitro coculture model. Mediators Inflamm 2015;2015(10):926369.
24) Yoon DS, Yoo JH, Kim YH, et al. The effects of COX-2 inhibitor during osteogenic differentiation of bone marrow-derived human mesenchymal stem cells. Stem Cells Dev 2010;19(10):1523-33.
25) Garcia-Martinez O, Diaz-Rodriguez L, Rodriguez-Perez L, et al. Effect of acetaminophen, ibuprofen and methylprednisolone on different parameters of human osteoblast-like cells. Arch Oral Biol 2011;56(4):317-23.
26) Muüller M, Raabe O, Addicks K, et al. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells. Cell Biol Int 2011;35(3):235-48.
27) Karakawa A, Fukawa Y, Okazaki M, et al. Diclofenac sodium inhibits NFκB transcription in osteoclasts. J Dent Res 2009;88(11):1042-7.
28) Kawashima M, Fujikawa Y, Itonaga I, et al. The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2009;19(2):192-8.
29) Igarashi K, Woo JT, Stern PH. Effects of a selective cyclooxygenase-2 inhibitor, celecoxib, on bone resorption and osteoclastogenesis in vitro. Biochem Pharmacol 2002;63(3):523-32.
30) Zhang X, Morham SG, Langenbach R, et al. Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J Bone Miner Res 2001;16(4):660-70.
and interleukin-1β. Endocrinology 1999;140(6):2685-95.
32) Geng DC, Zhu XS, Mao HQ, et al. Protection against titanium particle-induced osteoclastogenesis by cyclooxygenase-2 selective inhibitor. J Biomed Mater Res A 2011;99(4):516-22.
33) Ghalayani P, Minaiyan M, Razavi SM, et al. Effects of diclofenac and celecoxib on osteoclastogenesis during alveolar bone healing, in vivo. Dent Res J (Isfahan) 2014;11(3):357-63.
modulate the synthesis of osteoprotegerin and RANKL in the cartilage of patients with severe knee osteoarthritis. Arthritis Rheum 2010;62(2):478-88.
35) Moon SJ, Park JS, Jeong JH, et al. Augmented chondroprotective effect of coadministration of celecoxib and rebamipide in the monosodium iodoacetate rat model of osteoarthritis. Arch Pharm Res 2013;36(1):116-24.
and its receptors in osteoblastic Saos-2 cells. Connect Tissue Res 2007;48(5):246-53.
production in MC3T3-E1 cells. Connect Tissue Res 2010;51(2):150-8.
38) Tellegen AR, Rudnik-Jansen I, Pouran B, et al. Controlled release of celecoxib inhibits inflammation, bone cysts and osteophyte formation in a preclinical model of osteoarthritis. Drug Deliv 2018;25(1):1438-47.

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1286

印刷版ISSN:0557-0433

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら