1) Amanatullah D, Dennis D, Oltra EG, et al. Hip and knee section, diagnosis, definitions:Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(2):S329-37.
2) Lee YS, Koo K-H, Kim HJ, et al. Synovial fluid biomarkers for the diagnosis of periprosthetic joint infection. a systematic review and meta-analysis. J Bone Joint Surg Am 2017;99(24):2077-84.
3) Parvizi J, Della Valle CJ. AAOS Clinical Practice Guideline:Diagnosis and treatment of periprosthetic joint infections of the hip and knee. J Am Acad Orthop Surg 2010;18(12):771-2.
4) Abdel Karim M, Andrawis J, Bengoa F, et al. Hip and Knee Section, diagnosis, algorithm:Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(2):S339-50.
5) Bauer TW, Bedair H, Creech JD, et al. Hip and Knee Section, diagnosis, laboratory tests:Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(2):S351-9.
6) Trevors JT. Viable but non-culturable (VBNC) bacteria:Gene expression in planktonic and biofilm cells. J Microbiol Methods 2011;86(2):266-73.
7) Saeed K, McLaren AC, Schwarz EM, et al. 2018 international consensus meeting on musculoskeletal infection:Summary from the biofilm workgroup and consensus on biofilm related musculoskeletal infections. J Orthop Res 2019;37(5):1007-17.
8) Abdel MP, Akgün D, Akin G, et al. Hip and Knee Section, diagnosis, pathogen isolation, Culture:Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019;34(2):S361-7.
9) Tarabichi M, Shohat N, Goswami K, et al. Diagnosis of periprosthetic joint infection:The potential of next-generation sequencing. J Bone Joint Surg Am 2018;100(2):147-54.
10) Choe H, Inaba Y, Kobayashi N, et al. Use of real-time polymerase chain reaction for the diagnosis of infection and differentiation between gram-positive and gram-negative septic arthritis in children. J Pediatr Orthop 2013;33(3):e28-33.
11) Morgenstern C, Cabric S, Perka C, et al. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection. Diagn Microbiol Infect Dis 2018;90(2):115-9.
12) Metso L, Mäki M, Tissari P, et al. Efficacy of a novel PCR-and microarray-based method in diagnosis of a prosthetic joint infection. Acta Orthop 2014;85(2):165-70.
13) Janz V, Schoon J, Morgenstern C, et al. Rapid detection of periprosthetic joint infection Using a combination of 16s rDNA polymerase chain reaction and lateral flow immunoassay:a pilot study. Bone Joint Res 2018;7(1):12-9.
14) Choe H, Deirmengian CA, Hickok NJ, et al. Molecular Diagnostics. J Am Acad Orthop Surg 2015;23 Suppl:S26-31.
15) Miyamae Y, Inaba Y, Kobayashi N, et al. Quantitative evaluation of periprosthetic infection by real-time polymerase chain reaction:A comparison with conventional methods. Diagn Microbiol Infect Dis 2012;74(2):125-30.
16) Kobayashi N, Inaba Y, Choe H, et al. Rapid and sensitive detection of methicillin-resistant Staphylococcus periprosthetic infections using real-time polymerase chain reaction. Diagn Microbiol Infect Dis 2009;64(2):172-6.
17) Choe H, Aota Y, Kobayashi N, et al. Rapid sensitive molecular diagnosis of pyogenic spinal infections using methicillin-resistant Staphylococcus-specific polymerase chain reaction and 16S ribosomal RNA gene-based universal polymerase chain reaction. Spine J 2014;14(2):255-62.
18) Kobayashi N, Inaba Y, Choe H, et al. Simultaneous intraoperative detection of methicillin-resistant staphylococcus and pan-bacterial infection during revision surgery:Use of simple DNA release by ultrasonication and real-time polymerase chain reaction. J Bone Joint Surg Am 2009;91(12):2896-902.