1) Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88(6):581-6.
2) Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One 2017;12(6):e0178992.
3) Larson DB, Chen MC, Lungren MP, et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 2018;287(1):313-22.
4) Cross N, DeBerry J, Ortiz D, et al. Diagnostic quality of machine learning algorithm for optimization of low-dose computed tomography data. SIIM (Society for Imaging Informatics in Medicine) Annual Meeting, 2017.
5) Wang T, Iankoulski A, Mullarky B, et al. Intelligent tools for a productive radiologist workflow:how machine learning enriches hanging protocols. White paper, GE Healthcare 2013.
6) Pedoia V, Majumdar S, Link TM. Segmentation of joint and musculoskeletal tissue in the study of arthritis. MAGMA 2016;29(2):207-21.
7) Longtao Qi M, Xu Y. The Study of artificial intelligence-assisted diagnosis of low back pain. CAOS 2018;2:130-3.
8) Mayer H, Gomez F, Wierstra D, et al. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. Advanced Robotics 2008;22:1521-37.