1) Zhou X, Takayama R, Wang S, et al. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys 2017;44(10):5221-33.
2) 長谷川玲.AIによるノイズ低減処理「Pixel Shine」.Innervision 2017;32(7):31-4.
3) Fujisawa Y, Otomo Y, Ogata Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol 2019;180(2):373-81.
4) Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. CoRR 2014;abs/1409.1556.
5) Ioffe S, Szegedy C. Batch normalization:accelerating deep network training by reducing internal covariate shift. arXiv 2015;abs/1502.03167.
6) Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 2017;30(4):427-41.
7) Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88(6):581-6.
8) Lindsey R, Daluiski A, Chopra S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 2018;115(45):11591-6.