1) Kornfeld T, Borger A, Radtke C. Reconstruction of critical nerve defects using allogenic nerve tissue:a review of current approaches. Int J Mol Sci 2021;22(7):3515. doi:10.3390/ijms22073515.
2) Garrido RS, Aguado JM, Díaz-Pedroche C, et al. A review of critical periods for opportunistic infection in the new transplantation era. Transplantation 2006;82(11):1457-62.
3) Pedrini FA, Boriani F, Bolognesi F, et al. Cell-enhanced acellular nerve allografts for peripheral nerve reconstruction:a systematic review and a meta-analysis of the literature. Neurosurgery 2019;85(5):575-604.
4) Nakada M, Itoh S, Tada K, et al. Effects of hybridization of decellularized allogenic nerves with adipose-derive stem cell sheets to facilitate nerve regeneration. Brain Res 2020;1746:147025. doi:10.1016/j.brainres.2020.147025.
5) Hudson TW, Zawko S, Deister C, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 2004;10(11-12):1641-51.
6) Lovati AB, D'Arrigo D, Odella S, et al. Nerve repair using decellularized nerve grafts in rat models. A review of the literature. Front Cell Neurosci 2018;12:427. doi:10.3389/fncel.2018.00427.
7) Safa B, Jain S, Desai MJ, Greenberg JA, et al. Peripheral nerve repair throughout the body with processed nerve allografts:results from a large multicenter study. Microsurgery 2020;40(5):527-37.
8) Mackinnon SE, Dellon AL. Surgery of the peripheral nerve. 1st ed. New York:Thieme Medical Publishers;1988. p.115-29.
9) Gesslbauer B, Furtmüller GJ, Schuhfried O, et al. Nerve grafts bridging the thenar branch of the median nerve to the ulnar nerve to enhance nerve recovery:a report of three cases. J Hand Surg Eur Vol 2017;42(3):281-5.
10) Bertelli JA, Soldado F, Lehn VL, et al. Reappraisal of clinical deficits following high median nerve injuries. J Hand Surg Am 2016;41(1):13-9.
11) Mauch JT, Bae A, Shubinets V, et al. A systematic review of sensory outcomes of digital nerve gap reconstruction with autograft, allograft, and conduit. Ann Plast Surg 2019;82(4S Suppl 3):S247-55. doi:10.1097/SAP.0000000000001851.
12) Safa B, Buncke G. Autograft substitutes:conduits and processed nerve allografts. Hand Clin 2016;32(2):127-40.
13) Leversedge FJ, Zoldos J, Nydick J, et al. A multicenter matched cohort study of processed nerve allograft and conduit in digital nerve reconstruction. J Hand Surg Am 2020;45(12):1148-56.
14) Jiang CQ, Hu J, Xiang JP, et al. Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects:similar outcomes to autologous nerve grafts. Neural Regen Res. 2016;11(11):1845-50.
15) Isaacs J, Richards N, McMurtry J, et al. Micropuncture and pressure assisted Schwann cell seeding of nerve allograft. J Neurosci Methods 2017;287:47-52.
16) Hoben G, Yan Y, Iyer N, et al. Comparison of acellular nerve allograft modification with Schwann cells or VEGF. Hand (N Y) 2015;10(3):396-402.
17) Wang D, Huang X, Fu G, et al. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair. Neural Regen Res 2014;9(10):1041-6.
18) Li YJ, Zhao BL, Lv HZ, et al. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects:biomechanics and validation of mathematical models. Neural Regen Res 2016;11(8):1322-6.
19) Zhao Z, Wang Y, Peng J, et al. Repair of nerve defect with acellular nerve graft supplemented by bone marrow stromal cells in mice. Microsurgery 2011;31(5):388-94.
20) Liu G, Cheng Y, Guo S, et al. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med 2011;28(4):565-72.
21) Gao S, Zheng Y, Cai Q, et al. Combination of acellular nerve graft and Schwann cells-like cells for rat sciatic nerve regeneration. Neural Plast 2014;2014:139085. doi:10.1155/2014/139085.
22) García-Pérez MM, Martínez-Rodríguez HG, López-Guerra GG, et al. A modified chemical protocol of decellularization of rat sciatic nerve and its recellularization with mesenchymal differentiated Schwann-like cells:morphological and functional assessments. Histol Histopathol 2017;32(8):779-92.
23) Mathot F, Rbia N, Thaler R, et al. Gene expression profiles of differentiated and undifferentiated adipose derived mesenchymal stem cells dynamically seeded onto a processed nerve allograft. Gene 2020;724:144151. doi:10.1016/j.gene.2019.144151.
24) Mathot F, Rbia N, Bishop AT, et al. Adipose derived mesenchymal stem cells seeded onto a decellularized nerve allograft enhances angiogenesis in a rat sciatic nerve defect model. Microsurgery 2020;40(5):585-92.
25) Suganuma S, Tada K, Hayashi K, et al. Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. J Orthop Sci 2013;18(1):145-51.
26) Rbia N, Bulstra LF, Lewallen EA, et al. Seeding decellularized nerve allografts with adipose-derived mesenchymal stromal cells:an in vitro analysis of the gene expression and growth factors produced. J Plast Reconstr Aesthet Surg 2019;72(8):1316-25.
27) Wang YH, Guo YC, Wang DR, et al. Adipose stem cell-based clinical strategy for neural regeneration:a review of current opinion. Stem Cells Int 2019;2019:8502370. doi:10.1155/2019/8502370.
28) Luo H, Zhang Y, Zhang Z, et al. The protection of MSCs from apoptosis in nerve regeneration by TGFβ1 through reducing inflammation and promoting VEGF-dependent angiogenesis. Biomaterials 2012;33(17):4277-87.
29) Sukho P, Cohen A, Hesselink JW, et al. Adipose tissue-derived stem cell sheet application for tissue healing in vivo:a systematic review. Tissue Eng Part B Rev 2018;24(1):37-52.
30) Masgutov RF, Masgutova GA, Zhuravleva MN, et al. Human adipose-derived stem cells stimulate neuroregeneration. Clin Exp Med 2016;16(3):451-61.
31) Yamamoto D, Tada K, Suganuma S, et al. Differentiated adipose-derived stem cells promote peripheral nerve regeneration. Muscle Nerve 2020;62(1):119-27.
32) Kingham PJ, Kalbermatten DF, Mahay D, et al. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 2007;207(2):267-74.
33) Hong P, Yang H, Wu Y, et al. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells:a comprehensive review. Stem Cell Res Ther 2019;10(1):242. doi:10.1186/s13287-019-1358-y.
34) Haertinger M, Weiss T, Mann A, et al. Adipose stem cell-derived extracellular vesicles induce proliferation of Schwann cells via internalization. Cells 2020;9(1):163. doi:10.3390/cells9010163.
35) Nakajima T, Tada K, Nakada M, et al. Facilitatory effects of artificial nerve filled with adipose-derived stem cell sheets on peripheral nerve regeneration:an experimental study. J Orthop Sci 2020;S0949-2658(20)30283-9. doi:10.1016/j.jos.2020.09.014. Epub ahead of print.