icon fsr

文献詳細

雑誌文献

臨床整形外科56巻3号

2021年03月発行

文献概要

特集 骨折に対する積極的保存療法 基礎編

骨折治癒のプロセスに低出力超音波パルスLIPUSがもたらす治癒促進効果の多様性

著者: 高垣裕子1

所属機関: 1神奈川歯科大学大学院口腔科学講座硬組織分子細胞生物学

ページ範囲:P.219 - P.226

文献購入ページに移動
 LIPUSの刺激伝達経路には,特に炎症・免疫応答を機転として展開される骨折治癒の過程において,多彩な骨の機能のすべてにわたって驚くほど広範囲にCOX-2/PGE2による制御が存在する.炎症が全身性に影響を及ぼすこと,その際,力学刺激の存在(全身性には身体活動(active)vs.不活動(inactive)から,局所的には不動(disuse)vs.可動ないし運動(mobileないしlocomotive)が前提になることは,両者においてCOX-2/PGE2が重要な位置を占めることからも容易に推測できる.単に骨折治癒にとどまらず,LIPUSなどの代替物理刺激はまだまだ可能性を秘めている.

参考文献

1) Harrison A, Lin S, Pounder N, et al. Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics 2016;70:45-52.
2) Fung CH, Cheung WH, Pounder NM, et al. Effects of different therapeutic ultrasound intensities on fracture healing in rats. Ultrasound Med Biol 2012;38(5):745-52.
3) Angle SR, Sena K, Sumner DR, et al. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrasonics 2011;51(3):281-8.
4) Mahoney CM, Morgan MR, Harrison A, et al. Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1. J Biol Chem 2009;284(13):8898-909.
integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res 2011;317(18):2642-9.
6) Xu JK, Chen HJ, Li XD, et al. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem 2012;287(31):26200-12.
7) Tang CH, Yang RS, Huang TH, et al. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol 2006;69(6):2047-57.
8) Zhou S, Schmelz A, Seufferlein T, et al. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 2004;279(52):54463-9.
9) Leung KS, Lee WS, Cheung WH, et al. Lack of efficacy of low-intensity pulsed ultrasound on prevention of postmenopausal bone loss evaluated at the distal radius in older Chinese women. Clin Orthop Relat Res 2004;427:234-40.
10) Xiao W, Yang X, Wang Y, et al. Splenectomy delays fracture healing by affecting the level of tumor necrosis factor alpha, interleukin 6 and bone morphogenetic protein. Adv Clin Exp Med 2018;27(2):165-71.
11) Bastian O, Pillay J, Alblas J, et al. Systemic inflammation and fracture healing. J Leukoc Biol 2011;89(5):669-73.
12) Mountziaris PM, Spicer PP, Kasper FK, et al. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 2011;17(6):393-402.
13) Kumagai K, Takeuchi R, Ishikawa H, et al. Low-intensity pulsed ultrasound accelerates fracture healing by stimulation of recruitment of both local and circulating osteogenic progenitors. J Orthop Res 2012;30(9):1516-21.
14) Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 1983;101(3):153-9.
15) Xavier CAMDuarte LR. Ultrasonic stimulation of bone callus:clinical applications. Rev Bras Orthop 1983;18(3):73-80.
16) Bab I, Gazit D, Massarawa A, et al. Removal of tibial marrow induces increased formation of bone and cartilage in rat mandibular condyle. Calcif Tissue Int 1985;37(5):551-5.
17) Busse JW, Bhandari M, Einhorn TA, et al. TRUST Investigators writing group. Re-evaluation of low intensity pulsed ultrasound in treatment of tibial fractures (TRUST):randomized clinical trial. BMJ 2016;355:i5351.
18) Busse JW, Bhandari M, Kulkarni AV, et al. The effect of low-intensity pulsed ultrasound therapy on time to fracture healing:a meta-analysis. CMAJ 2002;166(4):437-41.
19) Adukia V, Mangwani J, Issac R, et al. Current concepts in the management of ankle arthritis. J Clin Orthop Trauma 2020;11(3):388-98.
20) Heckman JD, Ryaby JP, McCabe J, et al. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 1994;76(1):26-34.
21) Kristiansen TK, Ryaby JP, McCabe J, et al. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 1997;79(7):961-73.
22) Hasegawa T, Miwa M, Sakai Y, et al. Osteogenic activity of human fracture haematoma-derived progenitor cells is stimulated by low-intensity pulsed ultrasound in vitro. J Bone Joint Surg Br 2009;91(2):264-70.
23) Koga T, Niikura T, Lee SY, et al. In vitro hypertrophy and calcification of human fracture haematoma-derived cells in chondrogenic differentiation. Int Orthop 2013;37(5):961-7.
24) Wei FY, Leung KS, Li G, et al. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS One 2014;9(9):e106722.
25) Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. Bonekey Rep 2013;2:300.
26) Hidaka K, Miyamoto C, Wada-Takahashi S, et al. Humoral response to therapeutic low-intensity pulsed ultrasound (LIPUS) treatment of rat maxillary socket after the removal of a molar tooth. Int J Anal Bio-Sci 2015;3(1):17-24.
27) Xiang X, Shi P, Zhang P, et al. Impact of platelet-rich fibrin on mandibular third molar surgery recovery:a systematic review and meta-analysis. BMC Oral Health 2019;19(1):163.
28) Kang KL, Kim EC, Park JB, et al. High-frequency, low-intensity pulsed ultrasound enhances alveolar bone healing of extraction sockets in rats:a pilot study. Ultrasound Med Biol 2016;42(2):493-502.
29) Muire PJ, Mangum LH, Wenke JC. Time course of immune response and immunomodulation during normal and delayed healing of musculoskeletal wounds. Front Immunol 2020;11:1056.
30) Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep 2017;15(4):367-75.
31) Hidaka K, Mikuni-Takagaki Y, Wada-Takahashi S, et al. Low-intensity pulsed ultrasound prevents development of bisphosphonate-related osteonecrosis of the jaw-like pathophysiology in a rat model. Ultrasound Med Biol 2019;45(7):1721-32.
32) Einhorn TA, Gerstenfeld LC. Fracture healing:mechanisms and interventions. Nat Rev Rheumatol 2015;11(1):45-54.
33) Naruse K, Miyauchi A, Itoman M, et al. Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. J Bone Miner Res 2003;18(2):360-9.
34) Azuma Y, Ito M, Harada Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res 2001;16(4):671-80.
35) Naruse K, Sekiya H, Harada Y, et al. Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. Ultrasound Med Biol 2010;36(7):1098-1108.
36) Feigenson M, Jonason JH, Shen J et al, Inhibition of the prostaglandin EP-1 receptor in periosteum progenitor cells enhances osteoblast differentiation and fracture repair. Ann Biomed Eng 2020;48(3):927-39.
37) Padilla F, Puts R, Vico L, et al. Stimulation of bone repair with ultrasound:a review of the possible mechanic effects. Ultrasonics 2014;54(5):1125-45.
38) 高垣裕子.口腔におけるメカノバイオロジー.曽我部正博(編).メカノバイオロジー—細胞が力を感じ応答する仕組み—.京都:化学同人;2015.p.193-202.
39) Tai H, Miyaura C, Pilbeam CC, et al. Transcriptional induction of cyclooxygenase-2 in osteoblasts is involved in interleukin-6-induced osteoclast formation. Endocrinology 1997;138(6):2372-9.
40) Prystaz K, Kaiser K, Kovtun A, et al. Distinct effects of IL-6 classic and trans-signaling in bone fracture healing. Am J Pathol 2018;188(2):474-90.
41) Simon AM, O'Connor JP. Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am 2007;89(3):500-11.
42) Lu LY, Loi F, Nathan K, et al. Pro-inflammatory M1 macrophages promote osteogenesis by mesenchymal stem cells via the COX-2-prostaglandin E2 pathway. J Orthop Res 2017;35(11):2378-85.
43) Zhang ZC, Yang YL, Li B, et al. Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization. Biomed Pharmacother 2019;120:109499.
44) Padilla F, Puts R, Vico L, et al. Stimulation of bone repair with ultrasound. Adv Exp Med Biol 2016;880:385-427.
45) Reher P, Harris M, Whiteman M, et al. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 2002;31:236-41.
46) Giannoudis PV, MacDonald DA, Matthews SJ, et al. Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br 2000;82:655-8.

掲載誌情報

出版社:株式会社医学書院

電子版ISSN:1882-1286

印刷版ISSN:0557-0433

雑誌購入ページに移動
icon up

本サービスは医療関係者に向けた情報提供を目的としております。
一般の方に対する情報提供を目的としたものではない事をご了承ください。
また,本サービスのご利用にあたっては,利用規約およびプライバシーポリシーへの同意が必要です。

※本サービスを使わずにご契約中の電子商品をご利用したい場合はこちら