1) Tohma Y, Ohgushi H, Dohi Y, et al. Quantitative analysis of bone formation in the composites of cultured marrow cells and hydroxyapatite by X-ray computed tomography. Key Eng Mater 2003;240-2:615-8.
2) 田中孝昭,熊谷吉夫.骨補填材.日本Knee Osteotomyフォーラム(編).ゼロからはじめる!Knee Osteotomy アップデート.東京:全日本病院出版会;2018.p.116-9.
3) Takeuchi R, Ishikawa H, Aratake M, et al. Medial opening wedge high tibial osteotomy with early full weight bearing. Arthroscopy 2009;25(1):46-53.
4) Tohma Y, Takeuchi R, Tanaka Y. Advantages of creation holes and removal of air in artificial bone for early bone formation when used artificial bone as a gap filler in open wedge high tibial osteotomy. Eur J Orthop Surg Traumatol 2019;29(1):131-7.
5) 藤間保晶,竹内良平,大澤克成.高位脛骨骨切り術(HTO).整形外科Surgical Technique 2021;11(4):70-80.
6) 藤間保晶.Hybrid closed wedge high tibial osteotomy.症例から学ぶ膝周囲骨切り術ピットフォール.東京:全日本病院出版会;2021刊行予定.
7) 藤間保晶.高位脛骨骨切り術—Hybrid closed wedge HTO.松田秀一(編).整形外科手術Knack and Pitfalls 変形性膝関節症 外科的治療の要点と盲点.東京:文光堂;2021.p.118-30.
8) Ogawa H, Matsumoto K, Ogawa T, et al. Effect of wedge insertion angle on posterior tibial slope in medial opening wedge high tibial osteotomy. Orthop J Sports Med 2016;4(2):2325967116630748.
9) Altermatt S, Schwöbel M, Pochon JP. Operative treatment of solitary bone cysts with tricalcium phosphate ceramic. A 1 to 7 year follow-up. Eur J Pediatr Surg 1992;2(3):180-2.
10) Onodera J, Kondo E, Omizu N, et al. Beta-tricalcium phosphate shows superior absorption rate and osteoconductivity compared to hydroxyapatite in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2014;22(11):2763-70.
11) Muller ME.骨折手術法マニュアル AO法の実際.東京:シュプリンガー・フェアラーク東京;1994.p.12-79.
12) Okamoto M, Dohi Y, Ohgushi H, et al. Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J Mater Sci Mater Med 2006;17(4):327-36.
13) Liu G, Zhao L, Zhang W, et al. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. J Mater Sci Mater Med 2008;19(6):2367-76.
14) Eggli PS, Müller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 1988;(232):127-38.
15) Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010;31(3):461-6.
16) Torigoe I, Sotome S, Tsuchiya A, et al. Novel cell seeding system into a porous scaffold using a modified low-pressure method to enhance cell seeding efficiency and bone formation. Cell Transplant 2007;16(7):729-39.
17) Masaoka T, Yoshii T, Yuasa M, et al. Bone defect regeneration by a combination of a β-tricalcium phosphate scaffold and bone marrow stromal cells in a non-human primate model. Open Biomed Eng J 2016;10:2-11.
18) Yoshii T, Sotome S, Torigoe I, et al. Fresh bone marrow introduction into porous scaffolds using a simple low-pressure loading method for effective osteogenesis in a rabbit model. J Orthop Res 2009;27(1):1-7.
19) Hasegawa T, Miwa M, Sakai Y, et al. Efficient cell-seeding into scaffolds improves bone formation. J Dent Res 2010;89(8):854-9.
20) Torigoe I, Sotome S, Tsuchiya A, et al. Bone regeneration with autologous plasma, bone marrow stromal cells, and porous beta-tricalcium phosphate in nonhuman primates. Tissue Eng Part A 2009;15(7):1489-99.
21) Takeuchi R, Bito H, Akamatsu Y, et al. In vitro stability of open wedge high tibial osteotomy with synthetic bone graft. Knee 2010;17(3):217-20.
22) Takeuchi R, Aratake M, Bito H, et al. Simultaneous bilateral opening-wedge high tibial osteotomy with early full weight-bearing exercise. Knee Surg Sports Traumatol Arthrosc 2008;16(11):1030-7.
23) Takeuchi R, Woon-Hwa J, Ishikawa H, et al. Primary stability of different plate positions and the role of bone substitute in open wedge high tibial osteotomy. Knee 2017;24(6):1299-306.