1) Yabu A, Hoshino M, Tabuchi H, et al. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images. Spine J 2021;21(10):1652-8.
2) Selvaraju RR, Cogswell M, Das A, et al. Grad-cam:visual explanations from deep networks via gradient-based localization. Proc IEEE Int Conf Comput Vis 2017;618-26.
3) 藪 晋人,高橋真治,寺井秀富・他.人工知能技術を活用した骨粗鬆症性椎体骨折の画像診断補助システム.J Spine Res 2022;13:844-50.
4) Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging:a systematic review and meta-analysis. Lancet Digit Health 2019;1(6):e271-97.
5) Duron L, Ducarouge A, Gillibert A, et al. Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists:a multicenter cross-sectional diagnostic study. Radiology 2021;300(1):120-9.
6) Delmas PD, van de Langerijt L, Watts NB, et al. Underdiagnosis of vertebral fractures is a worldwide problem:the IMPACT study. J Bone Miner Res 2005;20(4):557-63.
7) Kanchiku T, Taguchi T, Kawai S. Magnetic resonance imaging diagnosis and new classification of the osteoporotic vertebral fracture. J Orthop Sci 2003;8(4):463-6.
8) Chen HY, Hsu BW, Yin YK, et al. Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs. PLoS One 2021;16(1):e0245992. doi:10.1371/journal.pone.0245992.
9) Murata K, Endo K, Aihara T, et al. Artificial intelligence for the detection of vertebral fractures on plain spinal radiography. Sci Rep 2020;10(1):1-8. doi:10.1038/s41598-020-76866-w.
10) Li YC, Chen HH, Horng-Shing Lu H, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists? Clin Orthop Relat Res 2021;479(7):1598-612.
11) Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med 2018;98:8-15.
12) Bar A, Wolf L, Amitai OB, et al:Compression fractures detection on CT. Proc. SPIE 10134, Medical imaging 2017:Computer-Aided Diagnosis 2017;1013440:1036-43.
13) Sadineni RT, Pasumarthy A, Bellapa NC, et al. Imaging patterns in MRI in recent bone injuries following negative or inconclusive plain radiographs. J Clin Diagn Res 2015;9(10):TC10-3.
14) Zhang Y, Qi H, Zhang Y, et al. Vertebral bone marrow edema in magnetic resonance imaging correlates with bone healing histomorphometry in (sub) acute osteoporotic vertebral compression fracture. Eur Spine J 2021;30(9):2708-17.
15) Takahashi S, Hoshino M, Takayama K, et al. Time course of osteoporotic vertebral fractures by magnetic resonance imaging using a simple classification:a multicenter prospective cohort study. Osteoporos Int 2017;28(2):473-82.
16) Wu E, Wu K, Daneshjou R, et al. How medical AI devices are evaluated:limitations and recommendations from an analysis of FDA approvals. Nat Med 2021;27(4):582-4.
17) Kolanu N, Silverstone EJ, Ho BH, et al. Clinical utility of computer-aided diagnosis of vertebral fractures from computed tomography images. J Bone Miner Res 2020;35(12):2307-12.
18) Kijowski R, Liu F, Caliva F, et al. Deep learning for lesion detection, progression, and prediction of musculoskeletal disease. J Magn Reson Imaging 2020;52(6):1607-19.
19) Takahashi S, Hoshino M, Takayama K, et al. Predicting delayed union in osteoporotic vertebral fractures with onsecutive magnetic resonance imaging in the acute phase:a multicenter cohort study. Osteoporos Int 2016;27(12):3567-75.
20) Wen YL, Leech M. Review of the role of radiomics in tumour risk classification and prognosis of cancer. Anticancer Res 2020;40(7):3605-18.
21) Muehlematter UJ, Mannil M, Becker AS, et al. Vertebral body insufficiency fractures:detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol 2019;29(5):2207-17.