1) Urakawa T, Tanaka Y, Goto S, et al. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 2019;48(2):239-44.
2) Yamada Y, Maki S, Kishida S, et al. Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy:ensemble decision-making with antero-posterior and lateral radiographs. Acta Orthop 2020;91(6):699-704.
3) Sato Y, Takegami Y, Asamoto T, et al. Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures:a multicenter study. BMC musculoskeletal disorders. 2021;22(1):407.
4) Cheng CT, Wang Y, Chen HW, et al. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat Commun 2021;12(1):1066.
5) von Schacky CE, Sohn JH, Liu F, et al. Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs. Radiology 2020;295(1):136-45.
6) Karnuta JM, Haeberle HS, Luu BC, et al. Artificial intelligence to identify arthroplasty implants from radiographs of the hip. J Arthroplasty 2021;36(7S):S290-4.
7) Karnuta JM, Murphy MP, Luu BC, et al. Artificial intelligence for automated implant identification in total hip arthroplasty:a multicenter external validation study exceeding two million plain radiographs. J Arthroplasty 2022;S0883-5403(22)00272-8. doi:10.1016/j.arth.2022.03.002
8) Jang SJ, Kunze KN, Vigdorchik JM, et al. John Charnley award:deep learning prediction of hip joint center on standard pelvis radiographs. J Arthroplasty 2022;37(7S):S400-7.
9) Gielis WP, Weinans H, Welsing PMJ, et al. An automated workflow based on hip shape improves personalized risk prediction for hip osteoarthritis in the CHECK study. Osteoarthritis Cartilage 2020;28(1):62-70.
10) Shohat N, Goswami K, Tan TL, et al. 2020 Frank Stinchfield award:identifying who will fail following irrigation and debridement for prosthetic joint infection. Bone Joint J 2020;102-B(7_Supple_B):11-9.
11) Hiasa Y, Otake Y, Takao M, et al. Automated muscle segmentation from clinical CT using bayesian U-Net for personalized musculoskeletal modeling. IEEE Trans Med Imaging 2020;39(4):1030-40.
12) Kagiyama Y, Otomaru I, Takao M, et al. CT-based automated planning of acetabular cup for total hip arthroplasty (THA) based on hybrid use of two statistical atlases. Int J Comput Assist Radiol Surg 2016;11(12):2253-71.
13) Otomaru I, Nakamoto M, Kagiyama Y, et al. Automated preoperative planning of femoral stem in total hip arthroplasty from 3D CT data:atlas-based approach and comparative study. Med Image Anal 2012;16(2):415-26.
14) Sakamoto M, Hiasa Y, Otake Y, et al. Bayesian segmentation of hip and thigh muscles in metal artifact-contaminated CT using convolutional neural network-enhanced normalized metal artifact reduction. J Signal Process Syst 2020;92(3):335-44.
15) Uemura K, Otake Y, Takao M, et al. Development of an open-source measurement system to assess the areal bone mineral density of the proximal femur from clinical CT images. Arch Osteoporos 2022;17(1):17.
16) Hiasa Y, Otake Y, Takao M, et al (eds). Cross-modality image synthesis from unpaired data using CycleGAN:effects of gradient consistency loss and training data size. Springer International Publishing, Cham, 2018.
17) Jodeiri A, Zoroofi RA, Hiasa Y, et al. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Comput Methods Programs Biomed 2020;184:105282.doi:10.1016/j.cmpb.2019.105282