1) Saiwai H, Ohkawa Y, Yamada H, et al. The LTB4-BLT1 axis mediates neutrophil infiltration and secondary injury in experimental spinal cord injury. Am J Pathol 2010;176(5):2352-66.
2) Brennan FH, Jogia T, Gillespie ER, et al. Complement receptor C3aR1 controls neutrophil mobilization following spinal cord injury through physiological antagonism of CXCR2. JCI Insight 2019:4(9):e98254. doi:10.1172/jci.insight.98254.
3) Kigerl KA, Gensel JC, Ankeny DP, et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009:29(43):13435-44.
4) Evans TA, Barkauskas DS, Myers JT, et al. High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Exp Neurol 2014:254:109-20.
5) Saiwai H, Kumamaru H, Ohkawa Y, et al. Ly6C+ Ly6G- Myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. J Neurochem 2013:125(1):74-88.
6) Kobayakawa K, Kumamaru H, Saiwai H, et al. Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Sci Transl Med 2014:6(256):256ra137. doi:10.1126/scitranslmed.3009430.
7) Lu M, He L. Textbook of neuroanesthesia and neurocritical care:volume II - neurocritical care. Anesth Analg 2019:129:e186.
8) Okada S, Nakamura M, Katoh H, et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 2006:12(7):829-34.
9) Hara M, Kobayakawa K, Ohkawa Y, et al. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 2017:23(7):818-28.
10) Kobayakawa K, Ohkawa Y, Yoshizaki S, et al. Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Sci Adv 2019:5(5):eaav5086. doi:10.1126/sciadv.aav5086.
11) Yokota K, Kubota K, Kobayakawa K, et al. Pathological changes of distal motor neurons after complete spinal cord injury. Mol Brain 2019:12(1):4. doi:10.1186/s13041-018-0422-3.
12) Kobayakawa K, DePetro KA, Zhong H, et al. Locomotor training increases synaptic structure with high NGL-2 expression after spinal cord hemisection. Neurorehabil Neural Repair 2019:33(3):225-31.
13) Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med 2022:28(2):260-71.
14) Kandhari S, Sharma D, Samuel S, et al. Epidural spinal stimulation enables global sensorimotor and autonomic function recovery after complete paralysis:1st study from India. IEEE Trans Neural Syst Rehabil Eng 2022. doi:10.1109/TNSRE.2022.3158393. Epub ahead of print.