1) 金村徳相,佐竹宏太郎,山口英敏・他.脊椎手術におけるナビゲーションの有用性.関節外科2015;34(2):176-88.
2) Kotani Y, Abumi K, Ito M, et al. Improved accuracy of computer-assisted cervical pedicle screw insertion. J Nerusurg Spine 2003;99(3 Suppl):257-63.
3) Ludwig SC, Kramer DL, Balderston RA, et al. Placement of pedicle screws in the human cadaveric cervical spine comparative accuracy of three techniques. Spine (Phila Pa 1976) 2000;25:1655-67.
4) Kotani Y, Abumi K, Ito M, et al. Accuracy analysis of pedicle screw placement in posterior scoliosis surgery:comparison between conventional fluoroscopic and computer-assisted technique. Spine (Phila Pa 1976) 2007;32:1543-50.
5) Rajasekaran S, Vidyadhara S, Ramesh P, et al. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976) 2007;32:E56-64. doi:10.1097/01.brs.0000252094.64857.ab.
6) Tauchi R, Imagama S, Sakai Y, et al. The correlation between cervical range of motion and misplacement of cervical pedicle screws during cervical posterior spinal fixation surgery using a CT-based navigation system. Eur Spine J 2013;22:1504-8.
7) Hott JS, Deshmukh VR, Klopfenstein JD, et al. Intraoperative Iso-C C-arm navigation in craniospinal surgery:the first 60 cases. Neurosurgery 2004;54:1131-6.
8) Ito Y, Sugimoto Y, Tomioka M, et al. Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 2008;9:450-3.
9) Ishikawa Y, Kanemura T, Yoshida G, et al. Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement:a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement. J Neurosurg Spine 2010;13:606-11.
10) Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg 2003;99(3 Suppl):324-9.
11) Ishikawa Y, Kanemura T, Yoshida G, et al. Intraoperative, full-rotation, three-dimensional image(Oarm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine 15:472-8, 2011.
12) 金村徳相,佐竹宏太郎,中島宏彰・他.「O-arm」の最新の応用法.脊椎脊髄ジャーナル2018;31(11):938-51.
13) 江原宗平.胸腔鏡下側弯症手術.関節外科2013:32(11):1275-80.
14) Ouchida J, Kanemura T, Satake K, et al. Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room. Eur Spine J 2020;29(6):1277-86.
15) Satake K, Kanemura T, Ito K, et al. Pedicle screw placement with use of a navigated surgical drill at subaxial cervical spine. J Clin Neurosci 2021;88:28-33.
16) Wolf A, Shoham M, Michael S, et al. Feasibility study of a mini, bone-attached, robotic system for spinal operations:analysis and experiments. Spine (Phila Pa 1976) 2004;29(2):220-8.
17) Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement:Part I--Technical development and a test case result. Neurosurgery 2006;59(3):641-50.
18) Hu X, Lieberman IH. What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res 2014;472:1839-44.
19) Schatlo B, Martinez R, Alaid A, et al. Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir (Wien) 2015;157:1819-23.
20) Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials. a meta-analysis. Spine (Phila Pa 1976) 2019;45(2):E111-9. doi:10.1097/BRS.0000000000003193.
21) Fan Y, Du JP, Liu JJ, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery:an updated meta-analysis. Medicine (Baltimore) 2018;97(22):e10970. doi:10.1097/MD.0000000000010970.
22) Mao G, Gigliotti MJ, Myers D, et al. Single-surgeon direct comparison of o-arm neuronavigation versus Mazor X robotic-guided posterior spinal instrumentation. World Neurosurg 2020;137:e278-85. doi:10.1016/j.wneu.2020.01.175.
23) Lieberman IH, Hardenbrook MA, Wang JC, et al. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech 2012;25(5):241-8.
24) Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement:lessons learned from the first 102 patients. Eur Spine J 2013;22(3):661-6.
25) Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot:retrospective study. Spine (Phila Pa 1976) 2010;35(24):2109-15.
26) Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws:a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 2012;37(8):E496-501. doi:10.1097/BRS.0b013e31824b7767.
27) Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement:lessons learned from the first 102 patients. Eur Spine J 2013;22(3):661-6.
28) Schizas C, Thein E, Kwiatkowski B, et al. Pedicle screw insertion:robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg 2012;78(2):240-5.
29) Urakov TM, Chang KH, Burks SS, et al. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus 2017;42(5):E4. doi:10.3171/2017.2.FOCUS175.
30) McDonnell JM, Ahern DP, Ó Doinn T, et al. Surgeon proficiency in robot-assisted spine surgery. Bone Joint J 2020;102-B(5):568-72.