1) Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement:beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br J Sports Med 2014;48(7):491-7.
2) Mountjoy M, Sundgot-Borgen JK, Burke LM, et al. IOC consensus statement on relative energy deficiency in sport (RED-S):2018 update. Br J Sports Med 2018;52(11):687-97.
3) Dipla K, Kraemer RR, Constantini NW, et al. Relative energy deficiency in sports (RED-S):elucidation of endocrine changes affecting the health of males and females. Hormones (Athens) 2021;20(1):35-47.
4) Areta JL, Taylor HL, Koehler K. Low energy availability:history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur J Appl Physiol 2021;121(1):1-21.
5) Moto K, Goshozono M, Torii S, et al. Resting energy expenditure is lower in Japanese female athletes with menstrual disorders than in eumenorrheic athletes. J Phys Fitness Sports Med 2022;11(1):35-42.
6) Tenforde AS, Barrack MT, Nattiv A, et al. Parallels with the Female Athlete Triad in male athletes. Sports Med 2016;46(2):171-82.
7) Lee S, Kuniko M, Han S, et al. Association of low energy availability and suppressed metabolic status in Korean male collegiate soccer players:a pilot study. Am J Mens Health 2020;14(6):1557988320982186. doi:10.1177/1557988320982186.
8) Aikawa Y, Kakutani Y, Agata U, et al. The influence of food restriction on bone in young female rats with voluntary wheel running over 5 weeks. J Phys Fitness Sports Med 2018;7(5):297-301.
9) Papageorgiou M, Martin D, Colgan H, et al. Bone metabolic responses to low energy availability achieved by diet or exercise in active eumenorrheic women. Bone 2018;114:181-8.
10) Taguchi M, Moto K, Lee S, et al. Energy intake deficiency promotes bone resorption and energy metabolism suppression in Japanese male endurance runners:a pilot study. Am J Mens Health 2020;14(1):1557988320905251. doi:10.1177/1557988320905251.
11) Ishizu T, Torii S, Takai E, et al. Japanese female athletes with low energy availability exhibit low multiple food group intake and increased tartrate-resistant acid phosphatase 5b levels:a cross-sectional study. J Phys Fitness Sports Med 2022;11(2):107-16.
12) Ishizu T, Torii S, Taguchi M. Habitual dietary status and stress fracture risk among Japanese female collegiate athletes. J Am Nutr Assoc 2022;41(5):481-8.
13) Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc 2016;48(3):543-68.
14) 田中 清,桒原晶子.ビタミンDによる骨折予防効果の社会的意義.栄養学雑誌2022;80(4):219-28.
15) Sale C, Elliott-Sale KJ. Nutrition and athlete bone health. Sports Med 2019;49(Suppl 2):139-51.
16) 厚生労働省,eJIM.海外の情報.ビタミンD.https://www.ejim.ncgg.go.jp/pro/overseas/c03/17.html.(2022年12月30日アクセス)
17) Tenforde AS, Sayres LC, Sainani KL, et al. Evaluating the relationship of calcium and vitamin D in the prevention of stress fracture injuries in the young athlete:a review of the literature. PM R 2010;2(10):945-9.
18) Cockayne S, Adamson J, Lanham-New S, et al. Vitamin K and the prevention of fractures:systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006;166(12):1256-61.
19) Alonso N, Meinitzer A, Fritz-Petrin E, et al. Role of vitamin K in bone and muscle metabolism. Calcif Tissue Int 2023;112(2):178-96.
20) Ishizu T, Torii S, Taguchi M. Association between serum uncarboxylated osteocalcin levels and nutritional intake in Japanese female athletes. Phys Act Nutr 2022;26(3):1-5. doi:10.20463/pan.2022.0012.
21) 田口素子,長坂聡子,金子香織・他.スポーツを行う小学生を対象とした栄養摂取状況と料理区分の出現頻度との関連.日本スポーツ栄養研究誌2011;4:26-33.
22) Kuroda T, Onoe Y, Yoshikata R, et al. Relationship between skipping breakfast and bone mineral density in young Japanese women. Asia Pac J Clin Nutr 2013;22(4):583-9.