1) Watanabe K, Michikawa T, Yonezawa I, et al. Physical activities and lifestyle factors related to adolescent idiopathic scoliosis. J Bone Joint Surg Am 2017;99(4):284-94.
2) Ohashi M, Watanabe K, Hirano T, et al. Predicting factors at skeletal maturity for curve progression and low back pain in adult patients treated nonoperatively for adolescent idiopathic scoliosis with thoracolumbar/lumbar curves:a mean 25-year follow-up. Spine (Phila Pa 1976) 2018;43(23):E1403-11. doi:10.1097/BRS.0000000000002716.
3) Simony A, Hansen EJ, Christensen SB, et al. Incidence of cancer in adolescent idiopathic scoliosis patients treated 25 years previously. Eur Spine J 2016;25(10):3366-70.
4) Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 1984;66(7):1061-71.
5) Richards BS, Bernstein RM, D'Amato CR, et al. Standardization of criteria for adolescent idiopathic scoliosis brace studies:SRS Committee on Bracing and Nonoperative Management. Spine (Phila Pa 1976) 2005;30(18):2068-75;discussion 2076-7.
6) Weinstein SL, Dolan LA, Wright JG, et al. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 2013;369(16):1512-21.
7) Murphy JS, Upasani VV, Yaszay B, et al. Predictors of distal adding-on in thoracic major curves with AR lumbar modifiers. Spine (Phila Pa 1976) 2017;42(4):E211-8. doi:10.1097/BRS.0000000000001761.
8) Uehara M, Takahashi J, Ikegami S, et al. Prediction of spontaneous lumbar curve correction after posterior spinal fusion for adolescent idiopathic scoliosis Lenke type 1 curves. Clin Spine Surg 2019;32(2):E112-6. doi:10.1097/BSD.0000000000000736.
9) Takahashi J, Newton PO, Ugrinow VL, et al. Selective thoracic fusion in adolescent idiopathic scoliosis:factors influencing the selection of the optimal lowest instrumented vertebra. Spine (Phila Pa 1976) 2011;36(14):1131-41.
10) Mimura T, Ikegami S, Banno T, et al. Usefulness of modified S-line for upper instrumented vertebra selection in adolescent idiopathic scoliosis Lenke type 2 curves. Sci Rep 2022;12(1):16996. doi:10.1038/s41598-022-21274-5.
11) Oba H, Ikegami S, Kuraishi S, et al. Perforation rate of pedicle screws using hybrid operating room combined with intraoperative computed tomography navigation for adolescent idiopathic scoliosis:impact of distance from the reference frame and other risk factors. Spine (Phila Pa 1976) 2020;45(20):E1357-64. doi:10.1097/BRS.0000000000003673.
12) Oba H, Ikegami S, Uehara M, et al. Reduction in CT scan number with the reference frame middle attachment method in intraoperative CT navigation for adolescent idiopathic scoliosis. Eur Spine J 2023;32(9):3133-9.
13) Tanikawa Y, Oba H, Fujii M, et al. Intraoperative cone beam CT in hybrid operation room for pediatric scoliosis patients:comparison of pedicle screw violation rate at normal and low radiation doses. Spine (Phila Pa 1976) 2022;47(12):E507-13. doi:10.1097/BRS.0000000000004226.
14) Uehara M, Takahashi J, Ikegami S, et al. Determination of optimal screw number based on correction angle for main thoracic curve in adolescent idiopathic scoliosis. J Orthop Sci 2019;24(3):415-9.