1) Fujimori T, Suzuki Y, Takenaka S, et al. Development of artificial intelligence for automated measurement of cervical lordosis on lateral radiographs. Sci Rep 2022;12(1):15732. doi:10.1038/s41598-022-19914-x.
2) Nakamoto A, Hori M, Onishi H, et al. Three-dimensional conditional generative adversarial network-based virtual thin-slice technique for the morphological evaluation of the spine. Sci Rep 2022;12(1):12176. doi:10.1038/s41598-022-16637-x.
3) Kita K, Fujimori T, Suzuki Y, et al. Bimodal artificial intelligence using TabNet for differentiating spinal cord tumors-integration of patient background information and images. iScience 2023;26(10):107900. doi:10.1016/j.isci.2023.107900.
4) Kita K, Uemura K, Takao M, et al. Use of artificial intelligence to identify data elements for The Japanese Orthopaedic Association National Registry from operative records. J Orthop Sci 2023;28(6):1392-9.
5) Nishigaki D, Suzuki Y, Wataya T, et al. BERT-based transfer learning in sentence-level anatomic classification of free-text radiology reports. Radiol Artif Intell 2023;5(2):e220097. doi:10.1148/ryai.220097.
6) Tanaka Y, Nakata T, Aiga K, et al. Performance of generative pretrained transformer on the national medical licensing examination in Japan. medRxiv 2023. doi:10.1101/2023.04.17.23288603.
7) Geoff Hinton:On Radiology https://www.youtube.com/watch?v=2HMPRXstSvQ(2024年2月20日アクセス)
8) Langlotz CP. Will artificial intelligence replace radiologists? Radiol Artif Intell 2019;1(3):e190058. doi:10.1148/ryai.2019190058.