1) Matsumoto T, Muratsu H, Tsumura N, et al. Joint gap kinematics in posterior-stabilized total knee arthroplasty measured by a new tensor with the navigation system. J Biomech Eng 2006;128(6):867-71.
2) Minoda Y, Nakagawa S, Sugama R, et al. Intraoperative assessment of midflexion laxity in total knee prosthesis. Knee 2014;21(4):810-4.
3) Watanabe T, Koga H, Katagiri H, et al. Coronal and sagittal laxity affects clinical outcomes in posterior-stabilized total knee arthroplasty:assessment of well-functioning knees. Knee Surg Sports Traumatol Arthrosc 2020;28(5):1400-9.
4) Tokuhara Y, Kadoya Y, Kanekasu K, et al. Evaluation of the flexion gap by axial radiography of the distal femur. J Bone Joint Surg Br 2006;88(10):1327-30.
5) Matsumoto T, Muratsu H, Kubo S, et al. Intraoperative soft tissue balance reflects minimum 5-year midterm outcomes in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Arthroplasty 2012;27(9):1723-30.
6) Takeda M, Ishii Y, Noguchi H, et al. Changes in varus-valgus laxity after total knee arthroplasty over time. Knee Surg Sports Traumatol Arthrosc 2012;20(10):1988-93.
7) Nagai K, Muratsu H, Matsumoto T, et al. Influence of intraoperative soft tissue balance on postoperative active knee extension in posterior-stabilized total knee arthroplasty. J Arthroplasty 2015;30(7):1155-9.
8) Matsuda Y, Ishii Y, Noguchi H, et al. Varus-valgus balance and range of movement after total knee arthroplasty. J Bone Joint Surg Br 2005;87(6):804-8.
9) Tsukeoka T, Tsuneizumi Y, Yoshino K. The rectangular flexion gap is associated with an increased knee flexion angle in a cruciate-sacrificing rotating platform mobile-bearing total knee arthroplasty. J Orthop Sci 2017;22(2):313-7.
10) Boettner F, Sculco P, Faschingbauer M, et al. Clinical outcome of posterior-stabilized total knee arthroplasty using an increased flexion gap in patients with preoperative stiffness. Bone Joint J. 2020;102-B(4):426-33.
11) Takayama K, Matsumoto T, Kubo S, et al. Influence of intra-operative joint gaps on post-operative flexion angle in posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2012;20(3):532-7.
12) Matsumoto T, Mizuno K, Muratsu H, et al. Influence of intra-operative joint gap on post-operative flexion angle in osteoarthritis patients undergoing posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2007;15(8):1013-8.
13) Nakano N, Matsumoto T, Muratsu H, et al. Postoperative knee flexion angle is affected by lateral laxity in cruciate-retaining total knee arthroplasty. J Arthroplasty 2016;31(2):401-5.
14) Kobayashi T, Suzuki M, Sasho T, et al. Lateral laxity in flexion increases the postoperative flexion angle in cruciate-retaining total knee arthroplasty. J Arthroplasty 2012;27(2):260-5.
15) Seki K, Seki T, Ogasa H, et al. Investigation of the effect of intraoperative mediolateral stability on postoperative sagittal stability after bi-cruciate stabilized total knee arthroplasty. J Orthop 2020;22:454-7.
16) Kamenaga T, Muratsu H, Kanda Y, et al. The influence of postoperative knee stability on patient satisfaction in cruciate-retaining total knee arthroplasty. J Arthroplasty 2018;33(8):2475-9.
17) Ueyama H, Kanemoto N, Minoda Y, et al. Association of a wider medial gap (medial laxity) in flexion with self-reported knee instability after medial-pivot total knee arthroplasty. J Bone Jt Surg 2022;104(10):910-8.
18) Takagi K, Taketomi S, Yamagami R, et al. Both intraoperative medial and lateral joint stabilities at midflexion influence postoperative patient-reported outcome measures following bi-cruciate stabilized total knee arthroplasty. J Knee Surg 2023;36(8):857-65.
19) Okamoto N, Nakamura E, Masuda T, et al. Lateral laxity in flexion influences patient-reported outcome after total knee arthroplasty. Indian J Orthop 2024;58(1):24-9.
20) Matsumoto T, Takayama K, Muratsu H, et al. Relatively loose flexion gap improves patient-reported clinical scores in cruciate-retaining total knee arthroplasty. J Knee Surg 2018;31(6):573-9.
21) Ismailidis P, Kuster MS, Jost B, et al. Clinical outcome of increased flexion gap after total knee arthroplasty. Can controlled gap imbalance improve knee flexion? Knee Surgery, Sport Traumatol Arthrosc 2017;25(6):1705-11.
22) Tu KC, Shih HT, Tang SC, et al. The disproportionate increase of the intraoperative flexion and extension gap space after posterior cruciate ligament resection in total knee arthroplasty. J Clin Med 2021;10(18):4228. doi:10.3390/jcm 10184228.
23) Heesterbeek PJC, Haffner N, Wymenga AB, et al. Patient-related factors influence stiffness of the soft tissue complex during intraoperative gap balancing in cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017;25(9):2760-8.
24) Matsumoto T, Muratsu H, Kubo S, et al. The influence of preoperative deformity on intraoperative soft tissue balance in posterior-stabilized total knee arthroplasty. J Arthroplasty 2011;26(8):1291-8.
25) Lange J, Haas SB. Correcting severe valgus deformity:taking out the knock. Bone Joint J 2017;99-B(1 Supple A):60-4.
26) Sasaki H, Kubo S, Matsumoto T, et al. The influence of patella height on intra-operative soft tissue balance in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2012;20(11):2191-6.
27) Okazaki K, Tashiro Y, Mizu-uchi H, et al. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty. Knee 2014;21(4):806-9.
28) Matsumoto T, Kuroda R, Kubo S, et al. The intra-operative joint gap in cruciate-retaining compared with posterior-stabilised total knee replacement. J Bone Joint Surg Br 2009;91(4):475-80.
29) Matsumoto T, Muratsu H, Kubo S, et al. Soft tissue tension in cruciate-retaining and posterior-stabilized total knee arthroplasty. J Arthroplasty 2011;26(5):788-95.
30) Kadoya Y, Kobayashi A, Komatsu T, et al. Effects of posterior cruciate ligament resection on the tibiofemoral joint gap. Clin Orthop Relat Res 2001;(391):210-7.
31) Matsumoto T, Muratsu H, Kawakami Y, et al. Soft-tissue balancing in total knee arthroplasty:cruciate-retaining versus posterior-stabilised, and measured-resection versus gap technique. Int Orthop 2014;38(3):531-7.
32) Nagai K, Muratsu H, Kanda Y, et al. Intraoperative soft tissue balance using novel medial preserving gap technique in posterior-stabilized total knee arthroplasty:comparison to measured resection technique. Knee Surg Sports Traumatol Arthrosc 2018;26(11):3474-81.
33) Inui H, Yamagami R, Kono K, et al. Comparison of the joint laxity of total knee arthroplasty evaluated by the distraction force and the varus-valgus force. Knee 2022;34:98-107.
34) Kim TW, Lee SM, Seong SC, et al. Different intraoperative kinematics with comparable clinical outcomes of ultracongruent and posterior stabilized mobile-bearing total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2016;24(9):3036-43.
35) Held MB, Grosso MJ, Gazgalis A, et al. Improved compartment balancing using a robot-assisted total knee arthroplasty. Arthroplast Today 2021;7:130-4.
36) Matsumoto T, Nakano N, Hayashi S, et al. Prosthetic orientation, limb alignment, and soft tissue balance with bi-cruciate stabilized total knee arthroplasty:a comparison between the handheld robot and conventional techniques. Int Orthop 2023;47(6):1473-80.